Local existence and uniqueness for exterior static vacuum Einstein metrics
HTML articles powered by AMS MathViewer
- by Michael T. Anderson
- Proc. Amer. Math. Soc. 143 (2015), 3091-3096
- DOI: https://doi.org/10.1090/S0002-9939-2015-12486-0
- Published electronically: February 5, 2015
- PDF | Request permission
Abstract:
We study solutions to the static vacuum Einstein equations on domains of the form $M \simeq \mathbb {R}^{3}\setminus B$ with prescribed Bartnik data $(\gamma , H)$ on the inner boundary $\partial M$. It is proved that for any smooth boundary data $(\gamma , H)$ close to standard round data on the unit sphere $(\gamma _{+1}, 2)$, there exists a unique asymptotically flat solution of the static vacuum Einstein equations realizing the boundary data $(\gamma , H)$ which is close to the standard flat solution.References
- Michael T. Anderson, On boundary value problems for Einstein metrics, Geom. Topol. 12 (2008), no. 4, 2009–2045. MR 2431014, DOI 10.2140/gt.2008.12.2009
- Michael T. Anderson, Extension of symmetries on Einstein manifolds with boundary, Selecta Math. (N.S.) 16 (2010), no. 3, 343–375. MR 2734335, DOI 10.1007/s00029-010-0028-9
- Michael T. Anderson and Marcus A. Khuri, On the Bartnik extension problem for the static vacuum Einstein equations, Classical Quantum Gravity 30 (2013), no. 12, 125005, 33. MR 3064190, DOI 10.1088/0264-9381/30/12/125005
- Robert Bartnik, New definition of quasilocal mass, Phys. Rev. Lett. 62 (1989), no. 20, 2346–2348. MR 996396, DOI 10.1103/PhysRevLett.62.2346
- Robert Bartnik, Mass and 3-metrics of non-negative scalar curvature, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002) Higher Ed. Press, Beijing, 2002, pp. 231–240. MR 1957036
- R. Beig and W. Simon, Proof of a multipole conjecture due to Geroch, Comm. Math. Phys. 78 (1980/81), no. 1, 75–82. MR 597031
- Piotr T. Chruściel, Gregory J. Galloway, and Daniel Pollack, Mathematical general relativity: a sampler, Bull. Amer. Math. Soc. (N.S.) 47 (2010), no. 4, 567–638. MR 2721040, DOI 10.1090/S0273-0979-2010-01304-5
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- Pengzi Miao, On existence of static metric extensions in general relativity, Comm. Math. Phys. 241 (2003), no. 1, 27–46. MR 2013750, DOI 10.1007/s00220-003-0925-2
- P. Miao, personal communication.
Bibliographic Information
- Michael T. Anderson
- Affiliation: Department of Mathematics, Stony Brook University, Stony Brook, New York 11794-3651
- Email: anderson@math.sunysb.edu
- Received by editor(s): August 16, 2013
- Received by editor(s) in revised form: February 14, 2014
- Published electronically: February 5, 2015
- Additional Notes: This work was partially supported by NSF grant DMS 1205947
- Communicated by: Lei Ni
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 143 (2015), 3091-3096
- MSC (2010): Primary 83C20, 58D29, 58J32
- DOI: https://doi.org/10.1090/S0002-9939-2015-12486-0
- MathSciNet review: 3336633