A natural boundary for the dynamical zeta function for commuting group automorphisms
Author:
Richard Miles
Journal:
Proc. Amer. Math. Soc. 143 (2015), 2927-2933
MSC (2010):
Primary 37A45, 37B05, 37C25, 37C30, 37C85, 22D40
DOI:
https://doi.org/10.1090/S0002-9939-2015-12515-4
Published electronically:
February 25, 2015
MathSciNet review:
3336617
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: For an action $\alpha$ of $\mathbb {Z}^d$ by homeomorphisms of a compact metric space, D. Lind introduced a dynamical zeta function and conjectured that this function has a natural boundary when $d\geqslant 2$. In this note, under the assumption that $\alpha$ is a mixing action by continuous automorphisms of a compact connected abelian group of finite topological dimension, it is shown that the upper growth rate of periodic points is zero and that the unit circle is a natural boundary for the dynamical zeta function.
- M. Artin and B. Mazur, On periodic points, Ann. of Math. (2) 81 (1965), 82–99. MR 176482, DOI https://doi.org/10.2307/1970384
- J. Bell, R. Miles, and T. Ward. Towards a Polyá–Carlson dichotomy for algebraic dynamical zeta functions. Indagationes Mathematicae, to appear.
- Fritz Carlson, Über ganzwertige Funktionen, Math. Z. 11 (1921), no. 1-2, 1–23 (German). MR 1544479, DOI https://doi.org/10.1007/BF01203188
- Pietro Corvaja, Zéev Rudnick, and Umberto Zannier, A lower bound for periods of matrices, Comm. Math. Phys. 252 (2004), no. 1-3, 535–541. MR 2104888, DOI https://doi.org/10.1007/s00220-004-1184-6
- Pietro Corvaja and Umberto Zannier, A lower bound for the height of a rational function at $S$-unit points, Monatsh. Math. 144 (2005), no. 3, 203–224. MR 2130274, DOI https://doi.org/10.1007/s00605-004-0273-0
- Manfred Einsiedler and Douglas Lind, Algebraic $\Bbb Z^d$-actions of entropy rank one, Trans. Amer. Math. Soc. 356 (2004), no. 5, 1799–1831. MR 2031042, DOI https://doi.org/10.1090/S0002-9947-04-03554-8
- G. Everest, V. Stangoe, and T. Ward, Orbit counting with an isometric direction, Algebraic and topological dynamics, Contemp. Math., vol. 385, Amer. Math. Soc., Providence, RI, 2005, pp. 293–302. MR 2180241, DOI https://doi.org/10.1090/conm/385/07202
- Douglas Lind, Klaus Schmidt, and Tom Ward, Mahler measure and entropy for commuting automorphisms of compact groups, Invent. Math. 101 (1990), no. 3, 593–629. MR 1062797, DOI https://doi.org/10.1007/BF01231517
- D. A. Lind, A zeta function for ${\bf Z}^d$-actions, Ergodic theory of ${\bf Z}^d$ actions (Warwick, 1993–1994) London Math. Soc. Lecture Note Ser., vol. 228, Cambridge Univ. Press, Cambridge, 1996, pp. 433–450. MR 1411232, DOI https://doi.org/10.1017/CBO9780511662812.019
- Anthony Manning, Axiom ${\rm A}$ diffeomorphisms have rational zeta functions, Bull. London Math. Soc. 3 (1971), 215–220. MR 288786, DOI https://doi.org/10.1112/blms/3.2.215
- Richard Miles, Zeta functions for elements of entropy rank-one actions, Ergodic Theory Dynam. Systems 27 (2007), no. 2, 567–582. MR 2308145, DOI https://doi.org/10.1017/S0143385706000794
- Richard Miles, Synchronization points and associated dynamical invariants, Trans. Amer. Math. Soc. 365 (2013), no. 10, 5503–5524. MR 3074380, DOI https://doi.org/10.1090/S0002-9947-2013-05829-1
- Richard Miles and Thomas Ward, Periodic point data detects subdynamics in entropy rank one, Ergodic Theory Dynam. Systems 26 (2006), no. 6, 1913–1930. MR 2279271, DOI https://doi.org/10.1017/S014338570600054X
- G. Pólya, Über gewisse notwendige Determinantenkriterien für die Fortsetzbarkeit einer Potenzreihe, Math. Ann. 99 (1928), no. 1, 687–706 (German). MR 1512473, DOI https://doi.org/10.1007/BF01459120
- Klaus Schmidt, Dynamical systems of algebraic origin, Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, 1995. [2011 reprint of the 1995 original] [MR1345152]. MR 3024809
- Sanford L. Segal, Nine introductions in complex analysis, Revised edition, North-Holland Mathematics Studies, vol. 208, Elsevier Science B.V., Amsterdam, 2008. MR 2376066
- T. B. Ward, Periodic points for expansive actions of ${\bf Z}^d$ on compact abelian groups, Bull. London Math. Soc. 24 (1992), no. 4, 317–324. MR 1165372, DOI https://doi.org/10.1112/blms/24.4.317
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 37A45, 37B05, 37C25, 37C30, 37C85, 22D40
Retrieve articles in all journals with MSC (2010): 37A45, 37B05, 37C25, 37C30, 37C85, 22D40
Additional Information
Richard Miles
Affiliation:
School of Mathematics, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
Email:
r.miles@uea.ac.uk
Received by editor(s):
September 19, 2013
Received by editor(s) in revised form:
January 9, 2014
Published electronically:
February 25, 2015
Communicated by:
Nimish Shah
Article copyright:
© Copyright 2015
American Mathematical Society