## On a positivity preservation property for Schrödinger operators on Riemannian manifolds

HTML articles powered by AMS MathViewer

- by Ognjen Milatovic PDF
- Proc. Amer. Math. Soc.
**144**(2016), 301-313 Request permission

## Abstract:

We study a positivity preservation property for Schrödinger operators with singular potential on geodesically complete Riemannian manifolds with non-negative Ricci curvature. We apply this property to the question of self-adjointness of the maximal realization of the corresponding operator.## References

- Lashi Bandara,
*Density problems on vector bundles and manifolds*, Proc. Amer. Math. Soc.**142**(2014), no. 8, 2683–2695. MR**3209324**, DOI 10.1090/S0002-9939-2014-12284-2 - M. Braverman, O. Milatovich, and M. Shubin,
*Essential selfadjointness of Schrödinger-type operators on manifolds*, Uspekhi Mat. Nauk**57**(2002), no. 4(346), 3–58 (Russian, with Russian summary); English transl., Russian Math. Surveys**57**(2002), no. 4, 641–692. MR**1942115**, DOI 10.1070/RM2002v057n04ABEH000532 - Haïm Brézis and Tosio Kato,
*Remarks on the Schrödinger operator with singular complex potentials*, J. Math. Pures Appl. (9)**58**(1979), no. 2, 137–151. MR**539217** - Jochen Brüning, Vladimir Geyler, and Konstantin Pankrashkin,
*Continuity properties of integral kernels associated with Schrödinger operators on manifolds*, Ann. Henri Poincaré**8**(2007), no. 4, 781–816. MR**2333782**, DOI 10.1007/s00023-006-0322-z - H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon,
*Schrödinger operators with application to quantum mechanics and global geometry*, Springer Study Edition, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1987. MR**883643** - Allen Devinatz,
*Schrödinger operators with singular potentials*, J. Operator Theory**4**(1980), no. 1, 25–35. MR**587366** - Masatoshi Fukushima, Yoichi Oshima, and Masayoshi Takeda,
*Dirichlet forms and symmetric Markov processes*, Second revised and extended edition, De Gruyter Studies in Mathematics, vol. 19, Walter de Gruyter & Co., Berlin, 2011. MR**2778606** - Alexander Grigor’yan,
*Heat kernel and analysis on manifolds*, AMS/IP Studies in Advanced Mathematics, vol. 47, American Mathematical Society, Providence, RI; International Press, Boston, MA, 2009. MR**2569498**, DOI 10.1090/amsip/047 - Robert Grummt and Martin Kolb,
*Essential selfadjointness of singular magnetic Schrödinger operators on Riemannian manifolds*, J. Math. Anal. Appl.**388**(2012), no. 1, 480–489. MR**2869762**, DOI 10.1016/j.jmaa.2011.09.060 - Batu Güneysu,
*The Feynman-Kac formula for Schrödinger operators on vector bundles over complete manifolds*, J. Geom. Phys.**60**(2010), no. 12, 1997–2010. MR**2735286**, DOI 10.1016/j.geomphys.2010.08.007 - Batu Güneysu,
*On generalized Schrödinger semigroups*, J. Funct. Anal.**262**(2012), no. 11, 4639–4674. MR**2913682**, DOI 10.1016/j.jfa.2011.11.030 - Batu Güneysu,
*Kato’s inequality and form boundedness of Kato potentials on arbitrary Riemannian manifolds*, Proc. Amer. Math. Soc.**142**(2014), no. 4, 1289–1300. MR**3162250**, DOI 10.1090/S0002-9939-2014-11859-4 - B. Güneysu,
*Sequences of Laplacian cut-off functions.*J. Geom. Anal. DOI 10.1007/s12220-014-9543-9 - Batu Güneysu and Olaf Post,
*Path integrals and the essential self-adjointness of differential operators on noncompact manifolds*, Math. Z.**275**(2013), no. 1-2, 331–348. MR**3101810**, DOI 10.1007/s00209-012-1137-2 - Robert Jensen,
*Uniqueness of solutions to ${}-{}\Delta u-qu=0$*, Comm. Partial Differential Equations**3**(1978), no. 11, 1053–1076. MR**507786**, DOI 10.1080/03605307808820086 - H. Karcher,
*Riemannian center of mass and mollifier smoothing*, Comm. Pure Appl. Math.**30**(1977), no. 5, 509–541. MR**442975**, DOI 10.1002/cpa.3160300502 - Tosio Kato,
*Schrödinger operators with singular potentials*, Israel J. Math.**13**(1972), 135–148 (1973). MR**333833**, DOI 10.1007/BF02760233 - Tosio Kato,
*A second look at the essential selfadjointness of the Schrödinger operators*, Physical reality and mathematical description, Reidel, Dordrecht, 1974, pp. 193–201. MR**0477431** - T. Kato,
*Perturbation Theory for Linear Operators.*Springer-Verlag, New York, 1980. - Kazuhiro Kuwae and Masayuki Takahashi,
*Kato class functions of Markov processes under ultracontractivity*, Potential theory in Matsue, Adv. Stud. Pure Math., vol. 44, Math. Soc. Japan, Tokyo, 2006, pp. 193–202. MR**2277833**, DOI 10.2969/aspm/04410193 - Kazuhiro Kuwae and Masayuki Takahashi,
*Kato class measures of symmetric Markov processes under heat kernel estimates*, J. Funct. Anal.**250**(2007), no. 1, 86–113. MR**2345907**, DOI 10.1016/j.jfa.2006.10.010 - József Lőrinczi, Fumio Hiroshima, and Volker Betz,
*Feynman-Kac-type theorems and Gibbs measures on path space*, De Gruyter Studies in Mathematics, vol. 34, Walter de Gruyter & Co., Berlin, 2011. With applications to rigorous quantum field theory. MR**2848339**, DOI 10.1515/9783110203738 - Ognjen Milatovic,
*Self-adjoint realizations of Schrödinger operators on vector bundles over Riemannian manifolds*, Recent advances in harmonic analysis and partial differential equations, Contemp. Math., vol. 581, Amer. Math. Soc., Providence, RI, 2012, pp. 175–197. MR**3013059**, DOI 10.1090/conm/581/11488 - Michael Reed and Barry Simon,
*Methods of modern mathematical physics. II. Fourier analysis, self-adjointness*, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR**0493420** - Peter Stollmann and Jürgen Voigt,
*Perturbation of Dirichlet forms by measures*, Potential Anal.**5**(1996), no. 2, 109–138. MR**1378151**, DOI 10.1007/BF00396775

## Additional Information

**Ognjen Milatovic**- Affiliation: Department of Mathematics and Statistics, University of North Florida, Jacksonville, Florida 32224
- MR Author ID: 705360
- Email: omilatov@unf.edu
- Received by editor(s): November 16, 2014
- Received by editor(s) in revised form: December 21, 2014
- Published electronically: May 28, 2015
- Communicated by: Varghese Mathai
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**144**(2016), 301-313 - MSC (2010): Primary 47B25, 58J50; Secondary 35P05, 60H30
- DOI: https://doi.org/10.1090/proc/12701
- MathSciNet review: 3415597