On weak compactness in Lebesgue-Bochner spaces
HTML articles powered by AMS MathViewer
- by José Rodríguez
- Proc. Amer. Math. Soc. 144 (2016), 103-108
- DOI: https://doi.org/10.1090/proc/12846
- Published electronically: August 5, 2015
- PDF | Request permission
Abstract:
Let $X$ be a Banach space, $(\Omega ,\Sigma ,\mu )$ a probability space and $K$ a weakly compact subset of $L^p(\mu ,X)$, $1\leq p<\infty$. The following question was posed by J. Diestel: is there a weakly compactly generated subspace $Y \subset X$ such that $K \subset L^p(\mu ,Y)$? We show that, in general, the answer is negative. We also prove that the answer is affirmative if either $\mu$ is separable or $X$ is weakly sequentially complete.References
- S. A. Argyros, Weakly Lindelöf determined Banach spaces not containing $\ell ^1(N)$, preprint (1993), arXiv:math/9210210v1.
- Spiros A. Argyros and Sophocles Mercourakis, Examples concerning heredity problems of WCG Banach spaces, Proc. Amer. Math. Soc. 133 (2005), no. 3, 773–785. MR 2113927, DOI 10.1090/S0002-9939-04-07532-X
- Antonio Avilés, The number of weakly compact sets which generate a Banach space, Israel J. Math. 159 (2007), 189–204. MR 2342477, DOI 10.1007/s11856-007-0042-6
- Jürgen Batt and Wolfgang Hiermeyer, On compactness in $L_{p}(\mu ,\,X)$ in the weak topology and in the topology $\sigma (L_{p}(\mu ,\,X),\,L_{q}(\mu ,\,X^{\prime } ))$, Math. Z. 182 (1983), no. 3, 409–423. MR 696537, DOI 10.1007/BF01179760
- J. Bourgain, An averaging result for $l^{1}$-sequences and applications to weakly conditionally compact sets in $L^{1}_{X}$, Israel J. Math. 32 (1979), no. 4, 289–298. MR 571083, DOI 10.1007/BF02760458
- Joe Diestel, Some problems arising in connection with the theory of vector measures, Séminaire Choquet, 17e année (1977/78), Initiation à l’analyse, Fasc. 2, Secrétariat Math., Paris, 1978, pp. Exp. No. 23, 11. MR 522987
- J. Diestel, W. M. Ruess, and W. Schachermayer, On weak compactness in $L^1(\mu , X)$, Proc. Amer. Math. Soc. 118 (1993), no. 2, 447–453. MR 1132408, DOI 10.1090/S0002-9939-1993-1132408-X
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR 0453964
- Marián Fabian, Petr Habala, Petr Hájek, Vicente Montesinos, and Václav Zizler, Banach space theory, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer, New York, 2011. The basis for linear and nonlinear analysis. MR 2766381, DOI 10.1007/978-1-4419-7515-7
- D. H. Fremlin, Measure theory. Vol. 2, Torres Fremlin, Colchester, 2003. Broad foundations; Corrected second printing of the 2001 original. MR 2462280
- Richard Haydon, Nonseparable Banach spaces, Functional analysis: surveys and recent results, II (Proc. Second Conf. Functional Anal., Univ. Paderborn, Paderborn, 1979) Notas Mat., vol. 68, North-Holland, Amsterdam-New York, 1980, pp. 19–30. MR 565396
- H. Elton Lacey, The isometric theory of classical Banach spaces, Die Grundlehren der mathematischen Wissenschaften, Band 208, Springer-Verlag, New York-Heidelberg, 1974. MR 0493279
- Michel Talagrand, Weak Cauchy sequences in $L^{1}(E)$, Amer. J. Math. 106 (1984), no. 3, 703–724. MR 745148, DOI 10.2307/2374292
- A. Ülger, Weak compactness in $L^1(\mu ,X)$, Proc. Amer. Math. Soc. 113 (1991), no. 1, 143–149. MR 1070533, DOI 10.1090/S0002-9939-1991-1070533-0
Bibliographic Information
- José Rodríguez
- Affiliation: Departamento de Matemática Aplicada, Facultad de Informática, Universidad de Murcia, 30100 Espinardo (Murcia), Spain
- Email: joserr@um.es
- Received by editor(s): October 28, 2014
- Published electronically: August 5, 2015
- Additional Notes: This research was supported by MINECO and FEDER under project MTM2011-25377
- Communicated by: Thomas Schlumprecht
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 144 (2016), 103-108
- MSC (2010): Primary 46B50, 46G10
- DOI: https://doi.org/10.1090/proc/12846
- MathSciNet review: 3415580