## The automorphism group of a shift of subquadratic growth

HTML articles powered by AMS MathViewer

- by Van Cyr and Bryna Kra PDF
- Proc. Amer. Math. Soc.
**144**(2016), 613-621 Request permission

## Abstract:

For a subshift over a finite alphabet, a measure of the complexity of the system is obtained by counting the number of nonempty cylinder sets of length $n$. When this complexity grows exponentially, the automorphism group has been shown to be large for various classes of subshifts. In contrast, we show that subquadratic growth of the complexity implies that for a topologically transitive shift $X$, the automorphism group $\operatorname {Aut}(X)$ is small: if $H$ is the subgroup of $\operatorname {Aut}(X)$ generated by the shift, then $\operatorname {Aut}(X)/H$ is periodic. For linear growth, we show the stronger result that $\operatorname {Aut}(X)/H$ is a group of finite exponent.## References

- Pierre Arnoux and Gérard Rauzy,
*Représentation géométrique de suites de complexité $2n+1$*, Bull. Soc. Math. France**119**(1991), no. 2, 199–215 (French, with English summary). MR**1116845** - Mike Boyle, Douglas Lind, and Daniel Rudolph,
*The automorphism group of a shift of finite type*, Trans. Amer. Math. Soc.**306**(1988), no. 1, 71–114. MR**927684**, DOI 10.1090/S0002-9947-1988-0927684-2 - F. Durand, B. Host, and C. Skau,
*Substitutional dynamical systems, Bratteli diagrams and dimension groups*, Ergodic Theory Dynam. Systems**19**(1999), no. 4, 953–993. MR**1709427**, DOI 10.1017/S0143385799133947 - S. Donoso, F. Durand, A. Maass and S. Petite. On the automorphism group of minimal subshifts. arXiv:1501.00510.
- B. Host and F. Parreau,
*Homomorphismes entre systèmes dynamiques définis par substitutions*, Ergodic Theory Dynam. Systems**9**(1989), no. 3, 469–477 (French). MR**1016665**, DOI 10.1017/S0143385700005113 - N. Pytheas Fogg,
*Substitutions in dynamics, arithmetics and combinatorics*, Lecture Notes in Mathematics, vol. 1794, Springer-Verlag, Berlin, 2002. Edited by V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel. MR**1970385**, DOI 10.1007/b13861 - G. A. Hedlund,
*Endomorphisms and automorphisms of the shift dynamical system*, Math. Systems Theory**3**(1969), 320–375. MR**259881**, DOI 10.1007/BF01691062 - Douglas Lind and Brian Marcus,
*An introduction to symbolic dynamics and coding*, Cambridge University Press, Cambridge, 1995. MR**1369092**, DOI 10.1017/CBO9780511626302 - Marston Morse and Gustav A. Hedlund,
*Symbolic dynamics II. Sturmian trajectories*, Amer. J. Math.**62**(1940), 1–42. MR**745**, DOI 10.2307/2371431 - Tom Meyerovitch,
*Growth-type invariants for $\Bbb Z^d$ subshifts of finite type and arithmetical classes of real numbers*, Invent. Math.**184**(2011), no. 3, 567–589. MR**2800695**, DOI 10.1007/s00222-010-0296-1 - Jeanette Olli,
*Endomorphisms of Sturmian systems and the discrete chair substitution tiling system*, Discrete Contin. Dyn. Syst.**33**(2013), no. 9, 4173–4186. MR**3038057**, DOI 10.3934/dcds.2013.33.4173 - Jean-Jacques Pansiot,
*Complexité des facteurs des mots infinis engendrés par morphismes itérés*, Automata, languages and programming (Antwerp, 1984) Lecture Notes in Comput. Sci., vol. 172, Springer, Berlin, 1984, pp. 380–389 (French, with English summary). MR**784265**, DOI 10.1007/3-540-13345-3_{3}4 - Anthony Quas and Luca Zamboni,
*Periodicity and local complexity*, Theoret. Comput. Sci.**319**(2004), no. 1-3, 229–240. MR**2074955**, DOI 10.1016/j.tcs.2004.02.026 - V. Salo,
*Toeplitz subshift whose automorphism group is not finitely generated*, arXiv:1411.3299. - V. Salo and I. Törmä,
*Block Maps between Primitive Uniform and Pisot Substitutions*, arXiv:1306.3777. - J. W. Sander and R. Tijdeman,
*The rectangle complexity of functions on two-dimensional lattices*, Theoret. Comput. Sci.**270**(2002), no. 1-2, 857–863. MR**1871099**, DOI 10.1016/S0304-3975(01)00281-X

## Additional Information

**Van Cyr**- Affiliation: Department of Mathematics, Bucknell University, Lewisburg, Pennsylvania 17837
- MR Author ID: 883244
- Email: van.cyr@bucknell.edu
**Bryna Kra**- Affiliation: Department of Mathematics, Northwestern University, Evanston, Illinois 60208
- MR Author ID: 363208
- ORCID: 0000-0002-5301-3839
- Email: kra@math.northwestern.edu
- Received by editor(s): March 2, 2014
- Received by editor(s) in revised form: January 8, 2015
- Published electronically: June 9, 2015
- Additional Notes: The second author was partially supported by NSF grant $1200971$.
- Communicated by: Nimish Shah
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**144**(2016), 613-621 - MSC (2010): Primary 37B50; Secondary 68R15, 37B10
- DOI: https://doi.org/10.1090/proc12719
- MathSciNet review: 3430839