Rational approximations of sectional category and Poincaré duality
HTML articles powered by AMS MathViewer
- by José Gabriel Carrasquel-Vera, Thomas Kahl and Lucile Vandembroucq
- Proc. Amer. Math. Soc. 144 (2016), 909-915
- DOI: https://doi.org/10.1090/proc12722
- Published electronically: June 9, 2015
- PDF | Request permission
Abstract:
Félix, Halperin, and Lemaire have shown that the rational module category $\operatorname {Mcat}$ and the rational Toomer invariant $e_0$ coincide for simply connected Poincaré duality complexes. We establish an analogue of this result for the sectional category of a fibration.References
- J. G. Carrasquel-Vera, On the sectional category of certain maps, arXiv:1503.07314 (2015).
- Octav Cornea, Gregory Lupton, John Oprea, and Daniel Tanré, Lusternik-Schnirelmann category, Mathematical Surveys and Monographs, vol. 103, American Mathematical Society, Providence, RI, 2003. MR 1990857, DOI 10.1090/surv/103
- Michael Farber, Topological complexity of motion planning, Discrete Comput. Geom. 29 (2003), no. 2, 211–221. MR 1957228, DOI 10.1007/s00454-002-0760-9
- Yves Félix and Stephen Halperin, Rational LS category and its applications, Trans. Amer. Math. Soc. 273 (1982), no. 1, 1–38. MR 664027, DOI 10.1090/S0002-9947-1982-0664027-0
- Yves Félix, Stephen Halperin, and Jean-Claude Thomas, L.S. catégorie et suite spectrale de Milnor-Moore (une nuit dans le train), Bull. Soc. Math. France 111 (1983), no. 1, 89–96 (French, with English summary). MR 710377
- Yves Félix, Steve Halperin, and Jean-Michel Lemaire, The rational LS category of products and of Poincaré duality complexes, Topology 37 (1998), no. 4, 749–756. MR 1607732, DOI 10.1016/S0040-9383(97)00061-X
- Barry Jessup, Aniceto Murillo, and Paul-Eugène Parent, Rational topological complexity, Algebr. Geom. Topol. 12 (2012), no. 3, 1789–1801. MR 2979997, DOI 10.2140/agt.2012.12.1789
- Yves Félix, Stephen Halperin, and Jean-Claude Thomas, Rational homotopy theory, Graduate Texts in Mathematics, vol. 205, Springer-Verlag, New York, 2001. MR 1802847, DOI 10.1007/978-1-4613-0105-9
- Lucía Fernández Suárez, Pierre Ghienne, Thomas Kahl, and Lucile Vandembroucq, Joins of DGA modules and sectional category, Algebr. Geom. Topol. 6 (2006), 119–144. MR 2199456, DOI 10.2140/agt.2006.6.119
- Kathryn P. Hess, A proof of Ganea’s conjecture for rational spaces, Topology 30 (1991), no. 2, 205–214. MR 1098914, DOI 10.1016/0040-9383(91)90006-P
- Don Stanley, The sectional category of spherical fibrations, Proc. Amer. Math. Soc. 128 (2000), no. 10, 3137–3143. MR 1691006, DOI 10.1090/S0002-9939-00-05468-X
- A. S. Schwarz, The genus of a fiber space, Amer. Math. Soc. Transl. 55 (1966), 49-140.
Bibliographic Information
- José Gabriel Carrasquel-Vera
- Affiliation: Institut de Recherche en Mathématique et Physique, Université catholique de Louvain, 2 Chemin du Cyclotron, 1348 Louvain-la-Neuve, Belgium
- Email: jose.carrasquel@uclouvain.be
- Thomas Kahl
- Affiliation: Centro de Matemática, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- MR Author ID: 685613
- Email: kahl@math.uminho.pt
- Lucile Vandembroucq
- Affiliation: Centro de Matemática, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- MR Author ID: 657398
- Email: lucile@math.uminho.pt
- Received by editor(s): October 7, 2014
- Received by editor(s) in revised form: January 8, 2015
- Published electronically: June 9, 2015
- Additional Notes: The research of the first author was supported by FEDER through the Ministerio de Educación y Ciencia project MTM2010-18089. The research of the second and third authors was supported by FCT - Fundação para a Ciência e a Tecnologia through projects PTDC/MAT/0938317/2008 and PEstOE/MAT/UI0013/2014.
- Communicated by: Michael A. Mandell
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 144 (2016), 909-915
- MSC (2010): Primary 55M30, 55P62
- DOI: https://doi.org/10.1090/proc12722
- MathSciNet review: 3430865