On topological minors in random simplicial complexes
Authors:
Anna Gundert and Uli Wagner
Journal:
Proc. Amer. Math. Soc. 144 (2016), 1815-1828
MSC (2010):
Primary 55U10; Secondary 05C80, 60D05
DOI:
https://doi.org/10.1090/proc/12824
Published electronically:
September 24, 2015
MathSciNet review:
3451256
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: For random graphs, the containment problem considers the probability that a binomial random graph contains a given graph as a substructure. When asking for the graph as a topological minor, i.e., for a copy of a subdivision of the given graph, it is well known that the (sharp) threshold is at
. We consider a natural analogue of this question for higher-dimensional random complexes
, first studied by Cohen, Costa, Farber and Kappeler for
.
Improving previous results, we show that is the (coarse) threshold for containing a subdivision of any fixed complete
-complex. For higher dimensions
, we get that
is an upper bound for the threshold probability of containing a subdivision of a fixed
-dimensional complex.
- [1] Miklós Ajtai, János Komlós, and Endre Szemerédi, Topological complete subgraphs in random graphs, Studia Sci. Math. Hungar. 14 (1979), no. 1-3, 293–297 (1982). MR 645536
- [2] Sylwia Antoniuk, Tomasz Łuczak, and Jacek Świątkowski, Collapse of random triangular groups: a closer look, Bull. Lond. Math. Soc. 46 (2014), no. 4, 761–764. MR 3239613, https://doi.org/10.1112/blms/bdu034
- [3] Lior Aronshtam, Nathan Linial, Tomasz Łuczak, and Roy Meshulam, Collapsibility and vanishing of top homology in random simplicial complexes, Discrete Comput. Geom. 49 (2013), no. 2, 317–334. MR 3017914, https://doi.org/10.1007/s00454-012-9483-8
- [4] Eric Babson, Christopher Hoffman, and Matthew Kahle, The fundamental group of random 2-complexes, J. Amer. Math. Soc. 24 (2011), no. 1, 1–28. MR 2726597, https://doi.org/10.1090/S0894-0347-2010-00677-7
- [5] Edward A. Bender and E. Rodney Canfield, The asymptotic number of rooted maps on a surface, J. Combin. Theory Ser. A 43 (1986), no. 2, 244–257. MR 867650, https://doi.org/10.1016/0097-3165(86)90065-8
- [6] E. A. Bender, E. R. Canfield, and R. W. Robinson, The enumeration of maps on the torus and the projective plane, Canad. Math. Bull. 31 (1988), no. 3, 257–271. MR 956356, https://doi.org/10.4153/CMB-1988-039-4
- [7] Edward A. Bender and L. Bruce Richmond, A survey of the asymptotic behaviour of maps, J. Combin. Theory Ser. B 40 (1986), no. 3, 297–329. MR 842997, https://doi.org/10.1016/0095-8956(86)90086-9
- [8] Béla Bollobás, Random graphs, Combinatorics (Swansea, 1981) London Math. Soc. Lecture Note Ser., vol. 52, Cambridge Univ. Press, Cambridge-New York, 1981, pp. 80–102. MR 633650
- [9] B. Bollobás and A. Thomason, Threshold functions, Combinatorica 7 (1987), no. 1, 35–38. MR 905149, https://doi.org/10.1007/BF02579198
- [10] W. G. Brown, P. Erdős, and V. T. Sós, Some extremal problems on 𝑟-graphs, New directions in the theory of graphs (Proc. Third Ann Arbor Conf., Univ. Michigan, Ann Arbor, Mich, 1971) Academic Press, New York, 1973, pp. 53–63. MR 0351888
- [11] D. Cohen, A. Costa, M. Farber, and T. Kappeler, Topology of random 2-complexes, Discrete Comput. Geom. 47 (2012), no. 1, 117–149. MR 2886093, https://doi.org/10.1007/s00454-011-9378-0
- [12] P. Erdős and A. Rényi, On the evolution of random graphs, Magyar Tud. Akad. Mat. Kutató Int. Közl. 5 (1960), 17–61 (English, with Russian summary). MR 0125031
- [13] Ehud Friedgut, Sharp thresholds of graph properties, and the 𝑘-sat problem, J. Amer. Math. Soc. 12 (1999), no. 4, 1017–1054. With an appendix by Jean Bourgain. MR 1678031, https://doi.org/10.1090/S0894-0347-99-00305-7
- [14] Ehud Friedgut and Gil Kalai, Every monotone graph property has a sharp threshold, Proc. Amer. Math. Soc. 124 (1996), no. 10, 2993–3002. MR 1371123, https://doi.org/10.1090/S0002-9939-96-03732-X
- [15] Zhicheng Gao, The number of rooted triangular maps on a surface, J. Combin. Theory Ser. B 52 (1991), no. 2, 236–249. MR 1110472, https://doi.org/10.1016/0095-8956(91)90065-R
- [16] Anna Gundert and Uli Wagner, On the subdivision containment problem for random 2-complexes, Young Researchers Forum - SoCG 2013.
- [17] Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR 1867354
- [18] John Philip Huneke, A minimum-vertex triangulation, J. Combin. Theory Ser. B 24 (1978), no. 3, 258–266. MR 0480137, https://doi.org/10.1016/0095-8956(78)90043-6
- [19] S. Janson, On concentration of probability, Contemporary combinatorics, Bolyai Soc. Math. Stud., vol. 10, János Bolyai Math. Soc., Budapest, 2002, pp. 289–301. MR 1919574
- [20] Svante Janson, Tomasz Łuczak, and Andrzej Rucinski, Random graphs, Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley-Interscience, New York, 2000. MR 1782847
- [21] Gil Kalai, Many triangulated spheres, Discrete Comput. Geom. 3 (1988), no. 1, 1–14. MR 918176, https://doi.org/10.1007/BF02187893
- [22] D. Korándi, Y. Peled, and B. Sudakov, A random triadic process, Preprint, arXiv:1503.05072, 2015.
- [23] Dmitry N. Kozlov, The threshold function for vanishing of the top homology group of random 𝑑-complexes, Proc. Amer. Math. Soc. 138 (2010), no. 12, 4517–4527. MR 2680076, https://doi.org/10.1090/S0002-9939-2010-10596-8
- [24] Michael Krivelevich and Benny Sudakov, The phase transition in random graphs: a simple proof, Random Structures Algorithms 43 (2013), no. 2, 131–138. MR 3085765, https://doi.org/10.1002/rsa.20470
- [25] Nathan Linial and Roy Meshulam, Homological connectivity of random 2-complexes, Combinatorica 26 (2006), no. 4, 475–487. MR 2260850, https://doi.org/10.1007/s00493-006-0027-9
- [26] Jiří Matoušek, Using the Borsuk-Ulam theorem, Universitext, Springer-Verlag, Berlin, 2003. Lectures on topological methods in combinatorics and geometry; Written in cooperation with Anders Björner and Günter M. Ziegler. MR 1988723
- [27] R. Meshulam and N. Wallach, Homological connectivity of random 𝑘-dimensional complexes, Random Structures Algorithms 34 (2009), no. 3, 408–417. MR 2504405, https://doi.org/10.1002/rsa.20238
- [28] Julian Pfeifle and Günter M. Ziegler, Many triangulated 3-spheres, Math. Ann. 330 (2004), no. 4, 829–837. MR 2102314, https://doi.org/10.1007/s00208-004-0594-2
- [29] Edwin H. Spanier, Algebraic topology, Springer-Verlag, New York-Berlin, 1981. Corrected reprint. MR 666554
- [30] W. T. Tutte, A census of planar maps, Canadian J. Math. 15 (1963), 249–271. MR 146823, https://doi.org/10.4153/CJM-1963-029-x
- [31] W. T. Tutte, On the enumeration of planar maps, Bull. Amer. Math. Soc. 74 (1968), 64–74. MR 218276, https://doi.org/10.1090/S0002-9904-1968-11877-4
- [32] W. T. Tutte, The enumerative theory of planar maps, A survey of combinatorial theory (Proc. Internat. Sympos., Colorado State Univ., Fort Collins, Colo., 1971) North-Holland, Amsterdam, 1973, pp. 437–448. MR 0364004
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 55U10, 05C80, 60D05
Retrieve articles in all journals with MSC (2010): 55U10, 05C80, 60D05
Additional Information
Anna Gundert
Affiliation:
Mathematisches Institut, Universität zu Köln, Weyertal 86–90, 50923 Köln, Germany
Email:
anna.gundert@uni-koeln.de
Uli Wagner
Affiliation:
IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria
Email:
uli@ist.ac.at
DOI:
https://doi.org/10.1090/proc/12824
Received by editor(s):
April 16, 2014
Received by editor(s) in revised form:
April 30, 2015, and May 4, 2015
Published electronically:
September 24, 2015
Additional Notes:
This research was supported by the Swiss National Science Foundation (SNF Projects 200021-125309 and 200020-138230). Work on this paper by the first author was conducted at the Institute of Theoretical Computer Science, ETH Zürich.
Communicated by:
Patricia L. Hersh
Article copyright:
© Copyright 2015
American Mathematical Society