Classification of trisections and the Generalized Property R Conjecture
HTML articles powered by AMS MathViewer
- by Jeffrey Meier, Trent Schirmer and Alexander Zupan
- Proc. Amer. Math. Soc. 144 (2016), 4983-4997
- DOI: https://doi.org/10.1090/proc/13105
- Published electronically: May 24, 2016
- PDF | Request permission
Abstract:
We show that the members of a large class of unbalanced four-manifold trisections are standard, and we present a family of trisections that is likely to include non-standard trisections of the four-sphere. As an application, we prove a stable version of the Generalized Property R Conjecture for $c$–component links with tunnel number at most $c$.References
- J. J. Andrews and M. L. Curtis, Free groups and handlebodies, Proc. Amer. Math. Soc. 16 (1965), 192–195. MR 173241, DOI 10.1090/S0002-9939-1965-0173241-8
- Leonardo N. Carvalho and Ulrich Oertel, A classification of automorphisms of compact 3–manifolds, arXiv:0510610, 2005.
- Michael H. Freedman and Frank Quinn, Topology of 4-manifolds, Princeton Mathematical Series, vol. 39, Princeton University Press, Princeton, NJ, 1990.
- Michael Hartley Freedman, The topology of four-dimensional manifolds, J. Differential Geometry 17 (1982), no. 3, 357–453. MR 679066
- David Gabai, Foliations and the topology of $3$-manifolds. II, J. Differential Geom. 26 (1987), no. 3, 461–478. MR 910017
- David Gabai, Foliations and the topology of $3$-manifolds. III, J. Differential Geom. 26 (1987), no. 3, 479–536. MR 910018
- David Gay and Robion Kirby, Trisecting 4–manifolds, arXiv:1205.1565v3, 2012.
- Robert E. Gompf, Martin Scharlemann, and Abigail Thompson, Fibered knots and potential counterexamples to the property 2R and slice-ribbon conjectures, Geom. Topol. 14 (2010), no. 4, 2305–2347. MR 2740649, DOI 10.2140/gt.2010.14.2305
- Robert E. Gompf and András I. Stipsicz, $4$-manifolds and Kirby calculus, Graduate Studies in Mathematics, vol. 20, American Mathematical Society, Providence, RI, 1999.
- C. McA. Gordon, Combinatorial methods in Dehn surgery, Lectures at KNOTS ’96 (Tokyo), Ser. Knots Everything, vol. 15, World Sci. Publ., River Edge, NJ, 1997, pp. 263–290. MR 1474525, DOI 10.1142/9789812796097_{0}010
- Wolfgang Haken, Some results on surfaces in $3$-manifolds, Studies in Modern Topology, Math. Assoc. America, Buffalo, N.Y.; distributed by Prentice-Hall, Englewood Cliffs, N.J., 1968, pp. 39–98. MR 0224071
- Klaus Johannson, Topology and combinatorics of 3-manifolds, Lecture Notes in Mathematics, vol. 1599, Springer-Verlag, Berlin, 1995. MR 1439249, DOI 10.1007/BFb0074005
- F. Laudenbach, On the $2$-spheres in a $3$-manifold, Bull. Amer. Math. Soc. 78 (1972), 792–795. MR 303554, DOI 10.1090/S0002-9904-1972-13039-8
- François Laudenbach and Valentin Poénaru, A note on $4$-dimensional handlebodies, Bull. Soc. Math. France 100 (1972), 337–344. MR 317343, DOI 10.24033/bsmf.1741
- Fengchun Lei, On stability of Heegaard splittings, Math. Proc. Cambridge Philos. Soc. 129 (2000), no. 1, 55–57. MR 1757777, DOI 10.1017/S0305004100004461
- Jeffrey Meier and Alexander Zupan, Genus two trisections are standard, arXiv:1410.8133, 2014.
- Peter S. Ozsváth and Zoltán Szabó, Knot Floer homology and integer surgeries, Algebr. Geom. Topol. 8 (2008), no. 1, 101–153. MR 2377279, DOI 10.2140/agt.2008.8.101
- Peter Ozsváth and Zoltán Szabó, Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. (2) 159 (2004), no. 3, 1159–1245. MR 2113020, DOI 10.4007/annals.2004.159.1159
- Kurt Reidemeister, Zur dreidimensionalen Topologie, Abh. Math. Sem. Univ. Hamburg 9 (1933), no. 1, 189–194 (German). MR 3069596, DOI 10.1007/BF02940644
- Martin Scharlemann, Producing reducible $3$-manifolds by surgery on a knot, Topology 29 (1990), no. 4, 481–500. MR 1071370, DOI 10.1016/0040-9383(90)90017-E
- Martin Scharlemann, Heegaard splittings of compact 3-manifolds, Handbook of geometric topology, North-Holland, Amsterdam, 2002, pp. 921–953. MR 1886684
- Saul Schleimer, Waldhausen’s theorem, Workshop on Heegaard Splittings, Geom. Topol. Monogr., vol. 12, Geom. Topol. Publ., Coventry, 2007, pp. 299–317. MR 2408252, DOI 10.2140/gtm.2007.12.299
- James Singer, Three-dimensional manifolds and their Heegaard diagrams, Trans. Amer. Math. Soc. 35 (1933), no. 1, 88–111. MR 1501673, DOI 10.1090/S0002-9947-1933-1501673-5
- Friedhelm Waldhausen, Heegaard-Zerlegungen der $3$-Sphäre, Topology 7 (1968), 195–203 (German). MR 227992, DOI 10.1016/0040-9383(68)90027-X
- Michael J. Williams, Handle number one links and generalized property $R$, Proc. Amer. Math. Soc. 140 (2012), no. 3, 1105–1109. MR 2869095, DOI 10.1090/S0002-9939-2011-10966-3
Bibliographic Information
- Jeffrey Meier
- Affiliation: Department of Mathematics, Indiana University, Bloomington, Indiana 47408
- MR Author ID: 849257
- Email: jlmeier@indiana.edu
- Trent Schirmer
- Affiliation: Department of Mathematics, Oklahoma State University, Stillwater, Oklahoma 74078
- Email: trent.schirmer@okstate.edu
- Alexander Zupan
- Affiliation: Department of Mathematics, University of Texas at Austin, Austin, Texas 78712
- Address at time of publication: Department of Mathematics, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588
- MR Author ID: 863648
- Email: zupan@unl.edu
- Received by editor(s): March 30, 2015
- Received by editor(s) in revised form: August 6, 2015, and January 14, 2016
- Published electronically: May 24, 2016
- Communicated by: Martin Scharlemann
- © Copyright 2016 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 144 (2016), 4983-4997
- MSC (2010): Primary 57M25, 57M99, 57Q25
- DOI: https://doi.org/10.1090/proc/13105
- MathSciNet review: 3544545