The Szlenk power type and tensor products of Banach spaces
HTML articles powered by AMS MathViewer
- by Szymon Draga and Tomasz Kochanek
- Proc. Amer. Math. Soc. 145 (2017), 1685-1698
- DOI: https://doi.org/10.1090/proc/13339
- Published electronically: October 31, 2016
- PDF | Request permission
Abstract:
We prove a formula for the Szlenk power type of the injective tensor product of Banach spaces with Szlenk index at most $\omega$. We also show that the Szlenk power type as well as summability of the Szlenk index are separably determined, and we extend some of our recent results concerning direct sums.References
- Fernando Albiac and Nigel J. Kalton, Topics in Banach space theory, Graduate Texts in Mathematics, vol. 233, Springer, New York, 2006. MR 2192298
- Dale Alspach, Robert Judd, and Edward Odell, The Szlenk index and local $l_1$-indices, Positivity 9 (2005), no. 1, 1–44. MR 2139115, DOI 10.1007/s11117-002-9781-0
- Ryan Causey, Estimation of the Szlenk index of Banach spaces via Schreier spaces, Studia Math. 216 (2013), no. 2, 149–178. MR 3085501, DOI 10.4064/sm216-2-4
- S. J. Dilworth, Denka Kutzarova, N. Lovasoa Randrianarivony, J. P. Revalski, and N. V. Zhivkov, Compactly uniformly convex spaces and property $(\beta )$ of Rolewicz, J. Math. Anal. Appl. 402 (2013), no. 1, 297–307. MR 3023259, DOI 10.1016/j.jmaa.2013.01.039
- Szymon Draga and Tomasz Kochanek, Direct sums and summability of the Szlenk index, J. Funct. Anal. 271 (2016), no. 3, 642–671. MR 3506961, DOI 10.1016/j.jfa.2016.02.020
- D. Freeman, E. Odell, Th. Schlumprecht, and A. Zsák, Banach spaces of bounded Szlenk index. II, Fund. Math. 205 (2009), no. 2, 161–177. MR 2545450, DOI 10.4064/fm205-2-5
- G. Godefroy, N. J. Kalton, and G. Lancien, Szlenk indices and uniform homeomorphisms, Trans. Amer. Math. Soc. 353 (2001), no. 10, 3895–3918. MR 1837213, DOI 10.1090/S0002-9947-01-02825-2
- Petr Hájek, Vicente Montesinos Santalucía, Jon Vanderwerff, and Václav Zizler, Biorthogonal systems in Banach spaces, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 26, Springer, New York, 2008. MR 2359536
- William B. Johnson, On finite dimensional subspaces of Banach spaces with local unconditional structure, Studia Math. 51 (1974), 225–240. MR 358306, DOI 10.4064/sm-51-3-225-240
- H. Knaust, E. Odell, and Th. Schlumprecht, On asymptotic structure, the Szlenk index and UKK properties in Banach spaces, Positivity 3 (1999), no. 2, 173–199. MR 1702641, DOI 10.1023/A:1009786603119
- Gilles Lancien, On the Szlenk index and the weak$^*$-dentability index, Quart. J. Math. Oxford Ser. (2) 47 (1996), no. 185, 59–71. MR 1380950, DOI 10.1093/qmath/47.1.59
- Gilles Lancien, A survey on the Szlenk index and some of its applications, RACSAM. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 100 (2006), no. 1-2, 209–235 (English, with English and Spanish summaries). MR 2267410
- V. D. Milman, Geometric theory of Banach spaces. II. Geometry of the unit ball, Uspehi Mat. Nauk 26 (1971), no. 6(162), 73–149 (Russian). MR 0420226
- Vitali D. Milman and Nicole Tomczak-Jaegermann, Asymptotic $l_p$ spaces and bounded distortions, Banach spaces (Mérida, 1992) Contemp. Math., vol. 144, Amer. Math. Soc., Providence, RI, 1993, pp. 173–195. MR 1209460, DOI 10.1090/conm/144/1209460
- Edward Odell and Th. Schlumprecht, Distortion and asymptotic structure, Handbook of the geometry of Banach spaces, Vol. 2, North-Holland, Amsterdam, 2003, pp. 1333–1360. MR 1999198, DOI 10.1016/S1874-5849(03)80038-4
- E. Odell and Th. Schlumprecht, Trees and branches in Banach spaces, Trans. Amer. Math. Soc. 354 (2002), no. 10, 4085–4108. MR 1926866, DOI 10.1090/S0002-9947-02-02984-7
- Edward W. Odell and Thomas Schlumprecht, Embedding into Banach spaces with finite dimensional decompositions, RACSAM. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 100 (2006), no. 1-2, 295–323 (English, with English and Spanish summaries). MR 2267413
- Stanisław Prus, Finite-dimensional decompositions with $p$-estimates and universal Banach spaces, Bull. Polish Acad. Sci. Math. 31 (1983), no. 5-8, 281–288 (1984) (English, with Russian summary). MR 750732
- M. Raja, On $\textrm {weak}^\ast$ uniformly Kadec-Klee renormings, Bull. Lond. Math. Soc. 42 (2010), no. 2, 221–228. MR 2601548, DOI 10.1112/blms/bdp108
- Raymond A. Ryan, Introduction to tensor products of Banach spaces, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 2002. MR 1888309, DOI 10.1007/978-1-4471-3903-4
- W. Szlenk, The non-existence of a separable reflexive Banach space universal for all separable reflexive Banach spaces, Studia Math. 30 (1968), 53–61. MR 227743, DOI 10.4064/sm-30-1-53-61
Bibliographic Information
- Szymon Draga
- Affiliation: Institute of Mathematics, University of Silesia, Bankowa 14, 40-007 Katowice, Poland
- MR Author ID: 1024172
- Email: szymon.draga@gmail.com
- Tomasz Kochanek
- Affiliation: Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-656 Warsaw, Poland – and – Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
- MR Author ID: 811694
- Email: tkoch@impan.pl
- Received by editor(s): April 12, 2016
- Received by editor(s) in revised form: June 9, 2016, and June 17, 2016
- Published electronically: October 31, 2016
- Communicated by: Thomas Schlumprecht
- © Copyright 2016 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 1685-1698
- MSC (2010): Primary 46B20, 46B28
- DOI: https://doi.org/10.1090/proc/13339
- MathSciNet review: 3601559