## Rogers-Ramanujan identities and the Robinson-Schensted-Knuth correspondence

HTML articles powered by AMS MathViewer

- by Sylvie Corteel PDF
- Proc. Amer. Math. Soc.
**145**(2017), 2011-2022 Request permission

## Abstract:

This paper gives a simple combinatorial proof of the second Rogers-Ramanujan identity by using cylindric plane partitions and the Robinson-Schensted-Knuth algorithm.## References

- George E. Andrews,
*On the general Rogers-Ramanujan theorem*, Memoirs of the American Mathematical Society, No. 152, American Mathematical Society, Providence, R.I., 1974. MR**0364082** - Alexei Borodin,
*Periodic Schur process and cylindric partitions*, Duke Math. J.**140**(2007), no. 3, 391–468. MR**2362241**, DOI 10.1215/S0012-7094-07-14031-6 - Cilanne Boulet and Igor Pak,
*A combinatorial proof of the Rogers-Ramanujan and Schur identities*, J. Combin. Theory Ser. A**113**(2006), no. 6, 1019–1030. MR**2244131**, DOI 10.1016/j.jcta.2005.09.007 - Jérémie Bouttier, Guillaume Chapuy, and Sylvie Corteel,
*From Aztec diamonds to pyramids: steep tilings*, Trans. Amer. Math. Soc., to appear (2016). - David M. Bressoud,
*Lattice paths and the Rogers-Ramanujan identities*, Number theory, Madras 1987, Lecture Notes in Math., vol. 1395, Springer, Berlin, 1989, pp. 140–172. MR**1019330**, DOI 10.1007/BFb0086403 - David M. Bressoud and Doron Zeilberger,
*A short Rogers-Ramanujan bijection*, Discrete Math.**38**(1982), no. 2-3, 313–315. MR**676546**, DOI 10.1016/0012-365X(82)90298-9 - Sylvie Corteel, Cyrille Savelief, and Mirjana Vuletić,
*Plane overpartitions and cylindric partitions*, J. Combin. Theory Ser. A**118**(2011), no. 4, 1239–1269. MR**2755080**, DOI 10.1016/j.jcta.2010.12.001 - Ira M. Gessel and C. Krattenthaler,
*Cylindric partitions*, Trans. Amer. Math. Soc.**349**(1997), no. 2, 429–479. MR**1389777**, DOI 10.1090/S0002-9947-97-01791-1 - Basil Gordon,
*A combinatorial generalization of the Rogers-Ramanujan identities*, Amer. J. Math.**83**(1961), 393–399. MR**123484**, DOI 10.2307/2372962 - Omar Foda and Trevor Welsh,
*Cylindric partitions, $W_r$ characters and the Andrews-Gordon-Bressoud identities*, 2015, arXiv:1510.02213. - Sergey Fomin,
*Schensted algorithms for dual graded graphs*, J. Algebraic Combin.**4**(1995), no. 1, 5–45. MR**1314558**, DOI 10.1023/A:1022404807578 - Sergey Fomin,
*Schur operators and Knuth correspondences*, J. Combin. Theory Ser. A**72**(1995), no. 2, 277–292. MR**1357774**, DOI 10.1016/0097-3165(95)90065-9 - A. M. Garsia and S. C. Milne,
*A Rogers-Ramanujan bijection*, J. Combin. Theory Ser. A**31**(1981), no. 3, 289–339. MR**635372**, DOI 10.1016/0097-3165(81)90062-5 - Sam Hopkins,
*RSK via local transformations*. An expository article based on presentations of Alex Postnikov. http://web.mit.edu/shopkins/research.html - Andrei Okounkov and Nikolai Reshetikhin,
*Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram*, J. Amer. Math. Soc.**16**(2003), no. 3, 581–603. MR**1969205**, DOI 10.1090/S0894-0347-03-00425-9 - Donald E. Knuth,
*Permutations, matrices, and generalized Young tableaux*, Pacific J. Math.**34**(1970), 709–727. MR**272654** - C. Krattenthaler,
*Growth diagrams, and increasing and decreasing chains in fillings of Ferrers shapes*, Adv. in Appl. Math.**37**(2006), no. 3, 404–431. MR**2261181**, DOI 10.1016/j.aam.2005.12.006 - Robin Langer,
*Enumeration of cylindric plane partitions*, FPSAC 2012, DMTCS proc. AR, 2012, 793–804. - Robin Langer,
*Enumeration of Cylindric Plane Partitions - Part II*, arXiv:1209.1807. - Igor Pak,
*Partition bijections, a survey*, Ramanujan J.**12**(2006), no. 1, 5–75. MR**2267263**, DOI 10.1007/s11139-006-9576-1 - Igor Pak,
*Hook length formula and geometric combinatorics*, Sém. Lothar. Combin.**46**(2001/02), Art. B46f, 13. MR**1877632** - L.J. Rogers and Srinivasa Ramanujan,
*Proof of certain identities in combinatorial analysis*, Camb. Phil. Soc. Proc., Vol 19, 1919, pp. 211–216. - Richard P. Stanley,
*Enumerative combinatorics. Vol. 2*, Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge University Press, Cambridge, 1999. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin. MR**1676282**, DOI 10.1017/CBO9780511609589 - Peter Tingley,
*Three combinatorial models for $\widehat \textrm {sl}_n$ crystals, with applications to cylindric plane partitions*, Int. Math. Res. Not. IMRN**2**(2008), Art. ID rnm143, 40. MR**2418856**

## Additional Information

**Sylvie Corteel**- Affiliation: IRIF, CNRS et Université Paris Diderot, Case 7014, 75251 Paris Cedex 13, France
- MR Author ID: 633477
- Email: corteel@liafa.univ-paris-diderot.fr
- Received by editor(s): November 3, 2015
- Received by editor(s) in revised form: May 17, 2016, July 6, 2016, and July 13, 2016
- Published electronically: December 9, 2016
- Communicated by: Patricia L. Hersh
- © Copyright 2016 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**145**(2017), 2011-2022 - MSC (2010): Primary 05A15, 05A17, 05A30, 05E10, 11P81
- DOI: https://doi.org/10.1090/proc/13373
- MathSciNet review: 3611316