Some spectral properties of pseudo-differential operators on the Sierpiński gasket
Authors:
Marius Ionescu, Kasso A. Okoudjou and Luke G. Rogers
Journal:
Proc. Amer. Math. Soc. 145 (2017), 2183-2198
MSC (2010):
Primary 35P20, 28A80; Secondary 42C99, 81Q10
DOI:
https://doi.org/10.1090/proc/13512
Published electronically:
December 15, 2016
MathSciNet review:
3611330
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We prove versions of the strong Szegö limit theorem for certain classes of pseudo-differential operators defined on the Sierpiński gasket. Our results use in a fundamental way the existence of localized eigenfunctions for the Laplacian on this fractal.
- Martin T. Barlow and Jun Kigami, Localized eigenfunctions of the Laplacian on p.c.f. self-similar sets, J. London Math. Soc. (2) 56 (1997), no. 2, 320–332. MR 1489140, DOI https://doi.org/10.1112/S0024610797005358
- Kyallee Dalrymple, Robert S. Strichartz, and Jade P. Vinson, Fractal differential equations on the Sierpinski gasket, J. Fourier Anal. Appl. 5 (1999), no. 2-3, 203–284. MR 1683211, DOI https://doi.org/10.1007/BF01261610
- M. Fukushima and T. Shima, On a spectral analysis for the Sierpiński gasket, Potential Anal. 1 (1992), no. 1, 1–35. MR 1245223, DOI https://doi.org/10.1007/BF00249784
- Masatoshi Fukushima, Yoichi Oshima, and Masayoshi Takeda, Dirichlet forms and symmetric Markov processes, Second revised and extended edition, De Gruyter Studies in Mathematics, vol. 19, Walter de Gruyter & Co., Berlin, 2011. MR 2778606
- Victor Guillemin, Some classical theorems in spectral theory revisited, Seminar on Singularities of Solutions of Linear Partial Differential Equations (Inst. Adv. Study, Princeton, N.J., 1977/78) Ann. of Math. Stud., vol. 91, Princeton Univ. Press, Princeton, N.J., 1979, pp. 219–259. MR 547021
- Lars Hörmander, The analysis of linear partial differential operators. IV, Classics in Mathematics, Springer-Verlag, Berlin, 2009. Fourier integral operators; Reprint of the 1994 edition. MR 2512677
- Roger A. Horn and Charles R. Johnson, Matrix analysis, Cambridge University Press, Cambridge, 1990. Corrected reprint of the 1985 original. MR 1084815
- Marius Ionescu and Luke G. Rogers, Complex powers of the Laplacian on affine nested fractals as Calderón-Zygmund operators, Commun. Pure Appl. Anal. 13 (2014), no. 6, 2155–2175. MR 3248383, DOI https://doi.org/10.3934/cpaa.2014.13.2155
- Marius Ionescu, Luke G. Rogers, and Robert S. Strichartz, Pseudo-differential operators on fractals and other metric measure spaces, Rev. Mat. Iberoam. 29 (2013), no. 4, 1159–1190. MR 3148599, DOI https://doi.org/10.4171/RMI/752
- Jun Kigami, Analysis on fractals, Cambridge Tracts in Mathematics, vol. 143, Cambridge University Press, Cambridge, 2001. MR 1840042
- Kasso A. Okoudjou, Luke G. Rogers, and Robert S. Strichartz, Szegö limit theorems on the Sierpiński gasket, J. Fourier Anal. Appl. 16 (2010), no. 3, 434–447. MR 2643590, DOI https://doi.org/10.1007/s00041-009-9102-0
- Kasso A. Okoudjou and Robert S. Strichartz, Asymptotics of eigenvalue clusters for Schrödinger operators on the Sierpiński gasket, Proc. Amer. Math. Soc. 135 (2007), no. 8, 2453–2459. MR 2302566, DOI https://doi.org/10.1090/S0002-9939-07-09008-9
- Rammal Rammal and Gérard Toulouse, Random walks on fractal structures and percolation clusters, Journal de Physique Lettres 44 (1983), no. 1, 13–22.
- Barry Simon, Szegő’s theorem and its descendants, M. B. Porter Lectures, Princeton University Press, Princeton, NJ, 2011. Spectral theory for $L^2$ perturbations of orthogonal polynomials. MR 2743058
- Robert S. Strichartz, Differential equations on fractals, Princeton University Press, Princeton, NJ, 2006. A tutorial. MR 2246975
- Alexander Teplyaev, Spectral analysis on infinite Sierpiński gaskets, J. Funct. Anal. 159 (1998), no. 2, 537–567. MR 1658094, DOI https://doi.org/10.1006/jfan.1998.3297
- Harold Widom, Eigenvalue distribution theorems for certain homogeneous spaces, J. Functional Analysis 32 (1979), no. 2, 139–147. MR 534671, DOI https://doi.org/10.1016/0022-1236%2879%2990051-X
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35P20, 28A80, 42C99, 81Q10
Retrieve articles in all journals with MSC (2010): 35P20, 28A80, 42C99, 81Q10
Additional Information
Marius Ionescu
Affiliation:
Department of Mathematics, United States Naval Academy, Annapolis, Maryland 21402-5002
Email:
ionescu@usna.edu
Kasso A. Okoudjou
Affiliation:
Department of Mathematics, University of Maryland, College Park, Maryland 20742-4015
MR Author ID:
721460
ORCID:
setImmediate$0.18192135121667974$6
Email:
kasso@math.umd.edu
Luke G. Rogers
Affiliation:
Department of Mathematics, University of Connecticut, Storrs, Connecticut 06269-3009
MR Author ID:
785199
Email:
rogers@math.uconn.edu
Keywords:
Analysis on fractals,
localized eigenfunctions,
Sierpiński gasket,
Szëgo limit theorem
Received by editor(s):
June 19, 2014
Received by editor(s) in revised form:
July 23, 2016
Published electronically:
December 15, 2016
Additional Notes:
The first author was supported by a grant from the Simons Foundation (#209277). He would like to thank Kasso Okoudjou and the Department of Mathematics at the University of Maryland, College Park, and the Norbert-Wiener Center for Harmonic Analysis and Applications for their hospitality.
The second author was supported by a grant from the Simons Foundation (#319197) and ARO grant W911NF1610008.
Communicated by:
Alexander Iosevich