Some spectral properties of pseudo-differential operators on the Sierpiński gasket
HTML articles powered by AMS MathViewer
- by Marius Ionescu, Kasso A. Okoudjou and Luke G. Rogers
- Proc. Amer. Math. Soc. 145 (2017), 2183-2198
- DOI: https://doi.org/10.1090/proc/13512
- Published electronically: December 15, 2016
- PDF | Request permission
Abstract:
We prove versions of the strong Szegö limit theorem for certain classes of pseudo-differential operators defined on the Sierpiński gasket. Our results use in a fundamental way the existence of localized eigenfunctions for the Laplacian on this fractal.References
- Martin T. Barlow and Jun Kigami, Localized eigenfunctions of the Laplacian on p.c.f. self-similar sets, J. London Math. Soc. (2) 56 (1997), no. 2, 320–332. MR 1489140, DOI 10.1112/S0024610797005358
- Kyallee Dalrymple, Robert S. Strichartz, and Jade P. Vinson, Fractal differential equations on the Sierpinski gasket, J. Fourier Anal. Appl. 5 (1999), no. 2-3, 203–284. MR 1683211, DOI 10.1007/BF01261610
- M. Fukushima and T. Shima, On a spectral analysis for the Sierpiński gasket, Potential Anal. 1 (1992), no. 1, 1–35. MR 1245223, DOI 10.1007/BF00249784
- Masatoshi Fukushima, Yoichi Oshima, and Masayoshi Takeda, Dirichlet forms and symmetric Markov processes, Second revised and extended edition, De Gruyter Studies in Mathematics, vol. 19, Walter de Gruyter & Co., Berlin, 2011. MR 2778606
- Victor Guillemin, Some classical theorems in spectral theory revisited, Seminar on Singularities of Solutions of Linear Partial Differential Equations (Inst. Adv. Study, Princeton, N.J., 1977/78) Ann. of Math. Stud., vol. 91, Princeton Univ. Press, Princeton, N.J., 1979, pp. 219–259. MR 547021
- Lars Hörmander, The analysis of linear partial differential operators. IV, Classics in Mathematics, Springer-Verlag, Berlin, 2009. Fourier integral operators; Reprint of the 1994 edition. MR 2512677, DOI 10.1007/978-3-642-00136-9
- Roger A. Horn and Charles R. Johnson, Matrix analysis, Cambridge University Press, Cambridge, 1990. Corrected reprint of the 1985 original. MR 1084815
- Marius Ionescu and Luke G. Rogers, Complex powers of the Laplacian on affine nested fractals as Calderón-Zygmund operators, Commun. Pure Appl. Anal. 13 (2014), no. 6, 2155–2175. MR 3248383, DOI 10.3934/cpaa.2014.13.2155
- Marius Ionescu, Luke G. Rogers, and Robert S. Strichartz, Pseudo-differential operators on fractals and other metric measure spaces, Rev. Mat. Iberoam. 29 (2013), no. 4, 1159–1190. MR 3148599, DOI 10.4171/RMI/752
- Jun Kigami, Analysis on fractals, Cambridge Tracts in Mathematics, vol. 143, Cambridge University Press, Cambridge, 2001. MR 1840042, DOI 10.1017/CBO9780511470943
- Kasso A. Okoudjou, Luke G. Rogers, and Robert S. Strichartz, Szegö limit theorems on the Sierpiński gasket, J. Fourier Anal. Appl. 16 (2010), no. 3, 434–447. MR 2643590, DOI 10.1007/s00041-009-9102-0
- Kasso A. Okoudjou and Robert S. Strichartz, Asymptotics of eigenvalue clusters for Schrödinger operators on the Sierpiński gasket, Proc. Amer. Math. Soc. 135 (2007), no. 8, 2453–2459. MR 2302566, DOI 10.1090/S0002-9939-07-09008-9
- Rammal Rammal and Gérard Toulouse, Random walks on fractal structures and percolation clusters, Journal de Physique Lettres 44 (1983), no. 1, 13–22.
- Barry Simon, Szegő’s theorem and its descendants, M. B. Porter Lectures, Princeton University Press, Princeton, NJ, 2011. Spectral theory for $L^2$ perturbations of orthogonal polynomials. MR 2743058
- Robert S. Strichartz, Differential equations on fractals, Princeton University Press, Princeton, NJ, 2006. A tutorial. MR 2246975
- Alexander Teplyaev, Spectral analysis on infinite Sierpiński gaskets, J. Funct. Anal. 159 (1998), no. 2, 537–567. MR 1658094, DOI 10.1006/jfan.1998.3297
- Harold Widom, Eigenvalue distribution theorems for certain homogeneous spaces, J. Functional Analysis 32 (1979), no. 2, 139–147. MR 534671, DOI 10.1016/0022-1236(79)90051-X
Bibliographic Information
- Marius Ionescu
- Affiliation: Department of Mathematics, United States Naval Academy, Annapolis, Maryland 21402-5002
- Email: ionescu@usna.edu
- Kasso A. Okoudjou
- Affiliation: Department of Mathematics, University of Maryland, College Park, Maryland 20742-4015
- MR Author ID: 721460
- ORCID: setImmediate$0.18192135121667974$6
- Email: kasso@math.umd.edu
- Luke G. Rogers
- Affiliation: Department of Mathematics, University of Connecticut, Storrs, Connecticut 06269-3009
- MR Author ID: 785199
- Email: rogers@math.uconn.edu
- Received by editor(s): June 19, 2014
- Received by editor(s) in revised form: July 23, 2016
- Published electronically: December 15, 2016
- Additional Notes: The first author was supported by a grant from the Simons Foundation (#209277). He would like to thank Kasso Okoudjou and the Department of Mathematics at the University of Maryland, College Park, and the Norbert-Wiener Center for Harmonic Analysis and Applications for their hospitality.
The second author was supported by a grant from the Simons Foundation (#319197) and ARO grant W911NF1610008. - Communicated by: Alexander Iosevich
- Journal: Proc. Amer. Math. Soc. 145 (2017), 2183-2198
- MSC (2010): Primary 35P20, 28A80; Secondary 42C99, 81Q10
- DOI: https://doi.org/10.1090/proc/13512
- MathSciNet review: 3611330