Adaptive orthonormal systems for matrix-valued functions
Authors:
Daniel Alpay, Fabrizio Colombo, Tao Qian and Irene Sabadini
Journal:
Proc. Amer. Math. Soc. 145 (2017), 2089-2106
MSC (2010):
Primary 47A56, 41A20, 30H10
DOI:
https://doi.org/10.1090/proc/13359
Published electronically:
January 6, 2017
MathSciNet review:
3611323
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper we consider functions in the Hardy space defined in the unit disc of matrix-valued functions. We show that it is possible, as in the scalar case, to decompose those functions as linear combinations of suitably modified matrix-valued Blaschke products, in an adaptive way. The procedure is based on a generalization to the matrix-valued case of the maximum selection principle which involves not only selections of suitable points in the unit disc but also suitable orthogonal projections. We show that the maximum selection principle gives rise to a convergent algorithm. Finally, we discuss the case of real-valued signals.
- [1] Daniel Alpay, An advanced complex analysis problem book, Birkhäuser/Springer, Cham, 2015. Topological vector spaces, functional analysis, and Hilbert spaces of analytic functions. MR 3410523
- [2] Daniel Alpay, Patrick Dewilde, and Harry Dym, On the existence and construction of solutions to the partial lossless inverse scattering problem with applications to estimation theory, IEEE Trans. Inform. Theory 35 (1989), no. 6, 1184–1205. MR 1036623, https://doi.org/10.1109/18.45275
- [3] Daniel Alpay, Aad Dijksma, James Rovnyak, and Hendrik de Snoo, Schur functions, operator colligations, and reproducing kernel Pontryagin spaces, Operator Theory: Advances and Applications, vol. 96, Birkhäuser Verlag, Basel, 1997. MR 1465432
- [4] Daniel Alpay and Harry Dym, On applications of reproducing kernel spaces to the Schur algorithm and rational 𝐽 unitary factorization, I. Schur methods in operator theory and signal processing, Oper. Theory Adv. Appl., vol. 18, Birkhäuser, Basel, 1986, pp. 89–159. MR 902603, https://doi.org/10.1007/978-3-0348-5483-2_5
- [5] Daniel Alpay and Israel Gohberg, On orthogonal matrix polynomials, Orthogonal matrix-valued polynomials and applications (Tel Aviv, 1987–88) Oper. Theory Adv. Appl., vol. 34, Birkhäuser, Basel, 1988, pp. 25–46. MR 1021059, https://doi.org/10.1007/978-3-0348-5472-6_2
- [6] Daniel Alpay and Israel Gohberg, Unitary rational matrix functions, Topics in interpolation theory of rational matrix-valued functions, Oper. Theory Adv. Appl., vol. 33, Birkhäuser, Basel, 1988, pp. 175–222. MR 960699, https://doi.org/10.1007/978-3-0348-5469-6_5
- [7] Daniel Alpay and H. Turgay Kaptanoğlu, Some finite-dimensional backward-shift-invariant subspaces in the ball and a related interpolation problem, Integral Equations Operator Theory 42 (2002), no. 1, 1–21. MR 1866874, https://doi.org/10.1007/BF01203020
- [8] Damir Z. Arov and Harry Dym, 𝐽-contractive matrix valued functions and related topics, Encyclopedia of Mathematics and its Applications, vol. 116, Cambridge University Press, Cambridge, 2008. MR 2474532
- [9] William Arveson, Subalgebras of 𝐶*-algebras. III. Multivariable operator theory, Acta Math. 181 (1998), no. 2, 159–228. MR 1668582, https://doi.org/10.1007/BF02392585
- [10] Joseph A. Ball and Vladimir Bolotnikov, Nevanlinna-Pick interpolation for Schur-Agler class functions on domains with matrix polynomial defining function in ℂⁿ, New York J. Math. 11 (2005), 247–290. MR 2154356
- [11] Joseph A. Ball, Vladimir Bolotnikov, and Quanlei Fang, Schur-class multipliers on the Arveson space: de Branges-Rovnyak reproducing kernel spaces and commutative transfer-function realizations, J. Math. Anal. Appl. 341 (2008), no. 1, 519–539. MR 2394102, https://doi.org/10.1016/j.jmaa.2007.10.033
- [12] Joseph A. Ball, Tavan T. Trent, and Victor Vinnikov, Interpolation and commutant lifting for multipliers on reproducing kernel Hilbert spaces, Operator theory and analysis (Amsterdam, 1997) Oper. Theory Adv. Appl., vol. 122, Birkhäuser, Basel, 2001, pp. 89–138. MR 1846055
- [13] Harm Bart, Israel Gohberg, and Marinus A. Kaashoek, Minimal factorization of matrix and operator functions, Operator Theory: Advances and Applications, vol. 1, Birkhäuser Verlag, Basel-Boston, Mass., 1979. MR 560504
- [14]
N. Bourbaki,
Topologie générale, Chapitre 5 à 10,
Diffusion C.C.L.S., Paris, 1974. - [15]
R. R. Coifman and S. Steinerberger,
Nonlinear phase unwinding of functions,
preprint, arXiv:1508.01241. - [16] Michael Cowling and Tao Qian, A class of singular integrals on the 𝑛-complex unit sphere, Sci. China Ser. A 42 (1999), no. 12, 1233–1245. MR 1749933, https://doi.org/10.1007/BF02876023
- [17] S. W. Drury, A generalization of von Neumann’s inequality to the complex ball, Proc. Amer. Math. Soc. 68 (1978), no. 3, 300–304. MR 480362, https://doi.org/10.1090/S0002-9939-1978-0480362-8
- [18] Harry Dym, 𝐽 contractive matrix functions, reproducing kernel Hilbert spaces and interpolation, CBMS Regional Conference Series in Mathematics, vol. 71, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1989. MR 1004239
- [19] John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971
- [20] Devin C. V. Greene, Stefan Richter, and Carl Sundberg, The structure of inner multipliers on spaces with complete Nevanlinna-Pick kernels, J. Funct. Anal. 194 (2002), no. 2, 311–331. MR 1934606, https://doi.org/10.1006/jfan.2002.3928
- [21] M. A. Kaashoek and J. Rovnyak, On the preceding paper by R. B. Leech, Integral Equations Operator Theory 78 (2014), no. 1, 75–77. MR 3147403, https://doi.org/10.1007/s00020-013-2108-7
- [22]
C. Lance,
Hilbert-modules: A toolkit for operator algebraists,
London Math. Soc. Lecture Notes, 210, 1994. - [23] Peter D. Lax and Ralph S. Phillips, Scattering theory, 2nd ed., Pure and Applied Mathematics, vol. 26, Academic Press, Inc., Boston, MA, 1989. With appendices by Cathleen S. Morawetz and Georg Schmidt. MR 1037774
- [24] Robert B. Leech, Factorization of analytic functions and operator inequalities, Integral Equations Operator Theory 78 (2014), no. 1, 71–73. MR 3147402, https://doi.org/10.1007/s00020-013-2107-8
- [25]
S. Mallat and Z. Zhang,
Matching pursuit with time-frequency dictionaries,
IEEE Trans. Signal Proc. (1993), 3397-3415. - [26] Wen Mi, Tao Qian, and Feng Wan, A fast adaptive model reduction method based on Takenaka-Malmquist systems, Systems Control Lett. 61 (2012), no. 1, 223–230. MR 2878709, https://doi.org/10.1016/j.sysconle.2011.10.016
- [27] V. P. Potapov, The multiplicative structure of 𝐽-contractive matrix functions, Trudy Moskov. Mat. Obšč. 4 (1955), 125–236 (Russian). MR 0076882
- [28] Tao Qian, Cyclic AFD algorithm for the best rational approximation, Math. Methods Appl. Sci. 37 (2014), no. 6, 846–859. MR 3188530, https://doi.org/10.1002/mma.2843
- [29] Tao Qian, Adaptive Fourier decompositions and rational approximations, part I: Theory, Int. J. Wavelets Multiresolut. Inf. Process. 12 (2014), no. 5, 1461008, 13. MR 3257806, https://doi.org/10.1142/S0219691314610086
- [30] Tao Qian, Hong Li, and Michael Stessin, Comparison of adaptive mono-component decompositions, Nonlinear Anal. Real World Appl. 14 (2013), no. 2, 1055–1074. MR 2991133, https://doi.org/10.1016/j.nonrwa.2012.08.017
- [31] Tao Qian, Two-dimensional adaptive Fourier decomposition, Math. Methods Appl. Sci. 39 (2016), no. 10, 2431–2448. MR 3512759, https://doi.org/10.1002/mma.3649
- [32] Tao Qian and Yan-Bo Wang, Adaptive Fourier series—a variation of greedy algorithm, Adv. Comput. Math. 34 (2011), no. 3, 279–293. MR 2776445, https://doi.org/10.1007/s10444-010-9153-4
- [33] Tao Qian, Yan-Bo Wang, and Pei Dang, Adaptive decomposition into mono-components, Adv. Adapt. Data Anal. 1 (2009), no. 4, 703–709. MR 2669206, https://doi.org/10.1142/S1793536909000278
- [34] Peter Quiggin, For which reproducing kernel Hilbert spaces is Pick’s theorem true?, Integral Equations Operator Theory 16 (1993), no. 2, 244–266. MR 1205001, https://doi.org/10.1007/BF01358955
- [35] Marvin Rosenblum and James Rovnyak, Hardy classes and operator theory, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1985. Oxford Science Publications. MR 822228
- [36] Walter Rudin, Function theory in the unit ball of 𝐶ⁿ, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 241, Springer-Verlag, New York-Berlin, 1980. MR 601594
- [37] V. N. Temlyakov, Weak greedy algorithms, Adv. Comput. Math. 12 (2000), no. 2-3, 213–227. MR 1745113, https://doi.org/10.1023/A:1018917218956
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 47A56, 41A20, 30H10
Retrieve articles in all journals with MSC (2010): 47A56, 41A20, 30H10
Additional Information
Daniel Alpay
Affiliation:
Department of Mathematics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
Email:
dany@math.bgu.ac.il
Fabrizio Colombo
Affiliation:
Dipartimento di Matematica, Politecnico di Milano, Via E. Bonardi, 9, 20133 Milano, Italy
Email:
fabrizio.colombo@polimi.it
Tao Qian
Affiliation:
Department of Mathematics, University of Macau, Avenida da Universidade, Taipa, Macau
Email:
fsttq@umac.mo
Irene Sabadini
Affiliation:
Dipartimento di Matematica, Politecnico di Milano, Via E. Bonardi, 9, 20133 Milano, Italy
Email:
irene.sabadini@polimi.it
DOI:
https://doi.org/10.1090/proc/13359
Keywords:
Matrix-valued functions and Hardy spaces,
matrix-valued Blaschke products,
maximum selection principle,
adaptive decomposition
Received by editor(s):
May 1, 2016
Received by editor(s) in revised form:
June 30, 2016
Published electronically:
January 6, 2017
Communicated by:
Stephan Ramon Garcia
Article copyright:
© Copyright 2017
American Mathematical Society