## Trajectories escaping to infinity in finite time

HTML articles powered by AMS MathViewer

- by J. K. Langley PDF
- Proc. Amer. Math. Soc.
**145**(2017), 2107-2117 Request permission

## Abstract:

If the function $f$ is transcendental and meromorphic in the plane, and either $f$ has finitely many poles or its inverse function has a logarithmic singularity over $\infty$, then the equation $\dot z = f(z)$ has infinitely many trajectories tending to infinity in finite increasing time.## References

- Walter Bergweiler and Alexandre Eremenko,
*On the singularities of the inverse to a meromorphic function of finite order*, Rev. Mat. Iberoamericana**11**(1995), no. 2, 355–373. MR**1344897**, DOI 10.4171/RMI/176 - Walter Bergweiler, Philip J. Rippon, and Gwyneth M. Stallard,
*Dynamics of meromorphic functions with direct or logarithmic singularities*, Proc. Lond. Math. Soc. (3)**97**(2008), no. 2, 368–400. MR**2439666**, DOI 10.1112/plms/pdn007 - Louis Brickman and E. S. Thomas,
*Conformal equivalence of analytic flows*, J. Differential Equations**25**(1977), no. 3, 310–324. MR**447674**, DOI 10.1016/0022-0396(77)90047-X - Kevin A. Broughan,
*The structure of sectors of zeros of entire flows*, Proceedings of the 17th Summer Conference on Topology and its Applications, 2003, pp. 379–394. MR**2077797** - Antonio Garijo, Armengol Gasull, and Xavier Jarque,
*Local and global phase portrait of equation $\dot z=f(z)$*, Discrete Contin. Dyn. Syst.**17**(2007), no. 2, 309–329. MR**2257435**, DOI 10.3934/dcds.2007.17.309 - Gary G. Gundersen,
*Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates*, J. London Math. Soc. (2)**37**(1988), no. 1, 88–104. MR**921748**, DOI 10.1112/jlms/s2-37.121.88 - Otomar Hájek,
*Notes on meromorphic dynamical systems. I*, Czechoslovak Math. J.**16(91)**(1966), 14–27 (English, with Russian summary). MR**194661** - Otomar Hájek,
*Notes on meromorphic dynamical systems. II*, Czechoslovak MAth. J.**16 (91)**(1966), 28–35 (English, with Russian summary). MR**0194662** - Otomar Hájek,
*Notes on meromorphic dynamical systems. III*, Czechoslovak Math. J.**16(91)**(1966), 36–40 (English, with Russian summary). MR**194663** - W. K. Hayman,
*The local growth of power series: a survey of the Wiman-Valiron method*, Canad. Math. Bull.**17**(1974), no. 3, 317–358. MR**385095**, DOI 10.4153/CMB-1974-064-0 - W. K. Hayman,
*Subharmonic functions. Vol. 2*, London Mathematical Society Monographs, vol. 20, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1989. MR**1049148** - D. J. Needham and A. C. King,
*On meromorphic complex differential equations*, Dynam. Stability Systems**9**(1994), no. 2, 99–122. MR**1287510**, DOI 10.1080/02681119408806171 - Rolf Nevanlinna,
*Eindeutige analytische Funktionen*, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band XLVI, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1953 (German). 2te Aufl. MR**0057330**

## Additional Information

**J. K. Langley**- Affiliation: School of Mathematical Sciences, University of Nottingham, NG7 2RD, United Kingdom
- MR Author ID: 110110
- Email: james.langley@nottingham.ac.uk
- Received by editor(s): May 11, 2016
- Received by editor(s) in revised form: July 4, 2016
- Published electronically: January 11, 2017
- Communicated by: Jeremy Tyson
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**145**(2017), 2107-2117 - MSC (2010): Primary 30D30
- DOI: https://doi.org/10.1090/proc/13377
- MathSciNet review: 3611324