Stable equivalences of Morita type do not preserve tensor products and trivial extensions of algebras
HTML articles powered by AMS MathViewer
- by Yuming Liu, Guodong Zhou and Alexander Zimmermann
- Proc. Amer. Math. Soc. 145 (2017), 1881-1890
- DOI: https://doi.org/10.1090/proc/13448
- Published electronically: January 25, 2017
- PDF | Request permission
Abstract:
It is well known that derived equivalences preserve tensor products and trivial extensions. We disprove both constructions for stable equivalences of Morita type.References
- Maurice Auslander and Idun Reiten, Stable equivalence of Artin algebras, Proceedings of the Conference on Orders, Group Rings and Related Topics (Ohio State Univ., Columbus, Ohio, 1972) Lecture Notes in Math., Vol. 353, Springer, Berlin, 1973, pp. 8–71. MR 0335575
- Maurice Auslander, Idun Reiten, and Sverre O. Smalø, Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, vol. 36, Cambridge University Press, Cambridge, 1995. MR 1314422, DOI 10.1017/CBO9780511623608
- Christine Bessenrodt, Thorsten Holm, and Alexander Zimmermann, Generalized Reynolds ideals for non-symmetric algebras, J. Algebra 312 (2007), no. 2, 985–994. MR 2333196, DOI 10.1016/j.jalgebra.2007.02.028
- S. Bouc and A. Zimmermann, On a question of Rickard on tensor product of stably equivalent algebras, preprint (2015) 20 pages, to appear in Experimental Mathematics, arXiv: 1501.01461v3.
- Michel Broué, Equivalences of blocks of group algebras, Finite-dimensional algebras and related topics (Ottawa, ON, 1992) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 424, Kluwer Acad. Publ., Dordrecht, 1994, pp. 1–26. MR 1308978, DOI 10.1007/978-94-017-1556-0_{1}
- Jon F. Carlson and Jacques Thévenaz, Torsion endo-trivial modules, Algebr. Represent. Theory 3 (2000), no. 4, 303–335. Special issue dedicated to Klaus Roggenkamp on the occasion of his 60th birthday. MR 1808129, DOI 10.1023/A:1009988424910
- Alex S. Dugas and Roberto Martínez-Villa, A note on stable equivalences of Morita type, J. Pure Appl. Algebra 208 (2007), no. 2, 421–433. MR 2277684, DOI 10.1016/j.jpaa.2006.01.007
- Karin Erdmann, Blocks of tame representation type and related algebras, Lecture Notes in Mathematics, vol. 1428, Springer-Verlag, Berlin, 1990. MR 1064107, DOI 10.1007/BFb0084003
- GAP-Groups, Algorithms, and programming, version 4.7.6, The GAP group, http://www.gap-system.org
- Bernhard Keller and Dieter Vossieck, Sous les catégories dérivées, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 6, 225–228 (French, with English summary). MR 907948
- Steffen Koenig, Yuming Liu, and Guodong Zhou, Transfer maps in Hochschild (co)homology and applications to stable and derived invariants and to the Auslander–Reiten conjecture, Trans. Amer. Math. Soc. 364 (2012), no. 1, 195–232. MR 2833582, DOI 10.1090/S0002-9947-2011-05358-4
- Steffen Koenig and Yuming Liu, Simple-minded systems in stable module categories, Q. J. Math. 63 (2012), no. 3, 653–674. MR 2967168, DOI 10.1093/qmath/har009
- Markus Linckelmann, Stable equivalences of Morita type for self-injective algebras and $p$-groups, Math. Z. 223 (1996), no. 1, 87–100. MR 1408864, DOI 10.1007/PL00004556
- Yuming Liu and Changchang Xi, Constructions of stable equivalences of Morita type for finite-dimensional algebras. III, J. Lond. Math. Soc. (2) 76 (2007), no. 3, 567–585. MR 2377112, DOI 10.1112/jlms/jdm065
- Yuming Liu, Guodong Zhou, and Alexander Zimmermann, Higman ideal, stable Hochschild homology and Auslander-Reiten conjecture, Math. Z. 270 (2012), no. 3-4, 759–781. MR 2892923, DOI 10.1007/s00209-010-0825-z
- Roberto Martínez-Villa, Algebras stably equivalent to $l$-hereditary, Representation theory, II (Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979) Lecture Notes in Math., vol. 832, Springer, Berlin, 1980, pp. 396–431. MR 607166
- Roberto Martínez-Villa, Properties that are left invariant under stable equivalence, Comm. Algebra 18 (1990), no. 12, 4141–4169. MR 1084445, DOI 10.1080/00927872.1990.12098256
- Jeremy Rickard, Morita theory for derived categories, J. London Math. Soc. (2) 39 (1989), no. 3, 436–456. MR 1002456, DOI 10.1112/jlms/s2-39.3.436
- Jeremy Rickard, Derived categories and stable equivalence, J. Pure Appl. Algebra 61 (1989), no. 3, 303–317. MR 1027750, DOI 10.1016/0022-4049(89)90081-9
- Jeremy Rickard, Derived equivalences as derived functors, J. London Math. Soc. (2) 43 (1991), no. 1, 37–48. MR 1099084, DOI 10.1112/jlms/s2-43.1.37
- Jeremy Rickard, Some recent advances in modular representation theory, Algebras and modules, I (Trondheim, 1996) CMS Conf. Proc., vol. 23, Amer. Math. Soc., Providence, RI, 1998, pp. 157–178. MR 1648606
- Raphaël Rouquier and Alexander Zimmermann, Picard groups for derived module categories, Proc. London Math. Soc. (3) 87 (2003), no. 1, 197–225. MR 1978574, DOI 10.1112/S0024611503014059
Bibliographic Information
- Yuming Liu
- Affiliation: School of Mathematical Sciences, Laboratory of Mathematics and Complex Systems, Beijing Normal University, Beijing 100875, People’s Republic of China
- MR Author ID: 672042
- Email: ymliu@bnu.edu.cn
- Guodong Zhou
- Affiliation: Department of Mathematics, Shanghai Key laboratory of PMMP, East China Normal University, Dong Chuan Road 500, Shanghai 200241, People’s Republic of China
- Email: gdzhou@math.ecnu.edu.cn
- Alexander Zimmermann
- Affiliation: Université de Picardie, Faculté de Mathématiques et LAMFA (UMR 7352 du CNRS), 33 rue St Leu, F-80039 Amiens Cedex 1, France
- MR Author ID: 326742
- Email: Alexander.Zimmermann@u-picardie.fr
- Received by editor(s): August 29, 2014
- Received by editor(s) in revised form: July 27, 2015, and June 27, 2016
- Published electronically: January 25, 2017
- Additional Notes: The authors were supported by the exchange program STIC-Asie ‘ESCAP’ financed by the French Ministry of Foreign Affairs
The first author was supported by the NCET Program from MOE of China, by NSFC (No. 11171325, No. 11331006), and by the Fundamental Research Funds for the Central Universities
The second author was supported by NSFC (No. 11671139) and by STCSM (No. 13dz2260400) - Communicated by: Harm Derksen
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 1881-1890
- MSC (2010): Primary 16G10, 20C05
- DOI: https://doi.org/10.1090/proc/13448
- MathSciNet review: 3611304