Bounds for the first several prime character nonresidues
HTML articles powered by AMS MathViewer
- by Paul Pollack
- Proc. Amer. Math. Soc. 145 (2017), 2815-2826
- DOI: https://doi.org/10.1090/proc/13432
- Published electronically: December 8, 2016
- PDF | Request permission
Abstract:
Let $\varepsilon > 0$. We prove that there are constants $m_0=m_0(\varepsilon )$ and $\kappa =\kappa (\varepsilon ) > 0$ for which the following holds: For every integer $m > m_0$ and every nontrivial Dirichlet character modulo $m$, there are more than $m^{\kappa }$ primes $\ell \le m^{\frac {1}{4\sqrt {e}}+\varepsilon }$ with $\chi (\ell )\notin \{0,1\}$. The proof uses the fundamental lemma of the sieve, Norton’s refinement of the Burgess bounds, and a result of Tenenbaum on the distribution of smooth numbers satisfying a coprimality condition. For quadratic characters, we demonstrate a somewhat weaker lower bound on the number of primes $\ell \le m^{\frac 14+\epsilon }$ with $\chi (\ell )=1$.References
- W. D. Banks, M. Z. Garaev, D. R. Heath-Brown, and I. E. Shparlinski, Density of non-residues in Burgess-type intervals and applications, Bull. Lond. Math. Soc. 40 (2008), no. 1, 88–96. MR 2409181, DOI 10.1112/blms/bdm111
- Jean Bourgain and Elon Lindenstrauss, Entropy of quantum limits, Comm. Math. Phys. 233 (2003), no. 1, 153–171. MR 1957735, DOI 10.1007/s00220-002-0770-8
- A. A. Buhštab, On those numbers in an arithmetic progression all prime factors of which are small in order of magnitude, Doklady Akad. Nauk SSSR (N.S.) 67 (1949), 5–8 (Russian). MR 0030995
- D. A. Burgess, The distribution of quadratic residues and non-residues, Mathematika 4 (1957), 106–112. MR 93504, DOI 10.1112/S0025579300001157
- H. Davenport and P. Erdös, The distribution of quadratic and higher residues, Publ. Math. Debrecen 2 (1952), 252–265. MR 55368, DOI 10.5486/pmd.1952.2.3-4.18
- N. G. de Bruijn, On the number of positive integers $\leq x$ and free prime factors $>y$. II, Indag. Math. 28 (1966), 239–247. Nederl. Akad. Wetensch. Proc. Ser. A 69. MR 0205945, DOI 10.1016/S1385-7258(66)50029-4
- Harold G. Diamond and H. Halberstam, A higher-dimensional sieve method, Cambridge Tracts in Mathematics, vol. 177, Cambridge University Press, Cambridge, 2008. With an appendix (“Procedures for computing sieve functions”) by William F. Galway. MR 2458547, DOI 10.1017/CBO9780511542909
- P. D. T. A. Elliott, The least prime $k-\textrm {th}$-power residue, J. London Math. Soc. (2) 3 (1971), 205–210. MR 281686, DOI 10.1112/jlms/s2-3.2.205
- GH from MO (http://mathoverflow.net/users/11919/gh-from-mo), Given a prime $p$ how many primes $\ell < p$ of a given quadratic character mod $p$?, MathOverflow, URL: http://mathoverflow.net/q/52393 (version: 2014-09-03).
- Carl Friedrich Gauss, Disquisitiones arithmeticae, Springer-Verlag, New York, 1986. Translated and with a preface by Arthur A. Clarke; Revised by William C. Waterhouse, Cornelius Greither and A. W. Grootendorst and with a preface by Waterhouse. MR 837656, DOI 10.1007/978-1-4939-7560-0
- Adolf Hildebrand, On the number of positive integers $\leq x$ and free of prime factors $>y$, J. Number Theory 22 (1986), no. 3, 289–307. MR 831874, DOI 10.1016/0022-314X(86)90013-2
- Richard H. Hudson, Prime $k$-th power non-residues, Acta Arith. 23 (1973), 89–106. MR 321849, DOI 10.4064/aa-23-1-89-106
- Richard H. Hudson, A note on the second smallest prime $k$th power nonresidue, Proc. Amer. Math. Soc. 46 (1974), 343–346. MR 364139, DOI 10.1090/S0002-9939-1974-0364139-6
- Richard H. Hudson, Power residues and nonresidues in arithmetic progressions, Trans. Amer. Math. Soc. 194 (1974), 277–289. MR 374002, DOI 10.1090/S0002-9947-1974-0374002-7
- Richard H. Hudson, A note on prime $k$th power nonresidues, Manuscripta Math. 42 (1983), no. 2-3, 285–288. MR 701210, DOI 10.1007/BF01169590
- Hugh L. Montgomery and Robert C. Vaughan, Multiplicative number theory. I. Classical theory, Cambridge Studies in Advanced Mathematics, vol. 97, Cambridge University Press, Cambridge, 2007. MR 2378655
- K. K. Norton, Estimates for prime $k$th power nonresidues, Notices Amer. Math. Soc. 21 (1974), January, 74T-A12.
- Karl K. Norton, A character-sum estimate and applications, Acta Arith. 85 (1998), no. 1, 51–78. MR 1623353, DOI 10.4064/aa-85-1-51-78
- Paul Pollack, Prime splitting in abelian number fields and linear combinations of Dirichlet characters, Int. J. Number Theory 10 (2014), no. 4, 885–903. MR 3208865, DOI 10.1142/S1793042114500055
- Paul Pollack, The smallest prime that splits completely in an abelian number field, Proc. Amer. Math. Soc. 142 (2014), no. 6, 1925–1934. MR 3182011, DOI 10.1090/S0002-9939-2014-12199-X
- G. Tenenbaum, Cribler les entiers sans grand facteur premier, Philos. Trans. Roy. Soc. London Ser. A 345 (1993), no. 1676, 377–384 (French, with English and French summaries). MR 1253499, DOI 10.1098/rsta.1993.0136
- Gérald Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge Studies in Advanced Mathematics, vol. 46, Cambridge University Press, Cambridge, 1995. Translated from the second French edition (1995) by C. B. Thomas. MR 1342300
- A. I. Vinogradov and Ju. V. Linnik, Hypoelliptic curves and the least prime quadratic residue, Dokl. Akad. Nauk SSSR 168 (1966), 259–261 (Russian). MR 0209223
- I. M. Vinogradov, On the distribution of quadratic residues and nonresidues, J. Phys.-Mat. ob-va Permsk Univ. 2 (1919), 1–16 (Russian).
- J. M. Vinogradov, On the bound of the least non-residue of $n$th powers, Trans. Amer. Math. Soc. 29 (1927), no. 1, 218–226. MR 1501385, DOI 10.1090/S0002-9947-1927-1501385-5
- Yuan Wang, Estimation and application of character sums, Shuxue Jinzhan 7 (1964), 78–83 (Chinese). MR 229588
- D. Wolke, A note on the least prime quadratic residue $(\textrm {mod}\,p)$, Acta Arith. 16 (1969/70), 85–87. MR 245536, DOI 10.4064/aa-16-1-85-88
Bibliographic Information
- Paul Pollack
- Affiliation: Department of Mathematics, Boyd Graduate Studies Building, University of Georgia, Athens, Georgia 30602
- MR Author ID: 830585
- Email: pollack@uga.edu
- Received by editor(s): August 24, 2015
- Received by editor(s) in revised form: August 8, 2016
- Published electronically: December 8, 2016
- Communicated by: Matthew A. Papanikolas
- © Copyright 2016 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 2815-2826
- MSC (2010): Primary 11A15; Secondary 11L40, 11N25
- DOI: https://doi.org/10.1090/proc/13432
- MathSciNet review: 3637932