## Localization of quantum states and landscape functions

HTML articles powered by AMS MathViewer

- by Stefan Steinerberger PDF
- Proc. Amer. Math. Soc.
**145**(2017), 2895-2907 Request permission

## Abstract:

Eigenfunctions in inhomogeneous media can have strong localization properties. Filoche and Mayboroda showed that the function $u$ solving $(-\Delta + V)u = 1$ controls the behavior of eigenfunctions $(-\Delta + V)\phi = \lambda \phi$ via the inequality \[ |\phi (x)| \leq \lambda u(x) \|\phi \|_{L^{\infty }}.\] This inequality has proven to be remarkably effective in predicting localization and recently Arnold, David, Jerison, Mayboroda and Filoche connected $1/u$ to decay properties of eigenfunctions. We aim to clarify properties of the landscape: the main ingredient is a localized variation estimate obtained from writing $\phi (x)$ as an average over Brownian motion $\omega (\cdot )$ started in $x$ \[ \phi (x) = \mathbb {E}_{x}\left (\phi (\omega (t)) e^{\lambda t-\int _{0}^{t}{V(\omega (z))dz}} \right ).\] This variation estimate will guarantee that $\phi$ has to change at least by a factor of 2 in a small ball, which implicitly creates a landscape whose relationship with $1/u$ we discuss.## References

- Shmuel Agmon,
*Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of $N$-body Schrödinger operators*, Mathematical Notes, vol. 29, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1982. MR**745286** - P. W. Anderson,
*Absence of Diffusion in Certain Random Lattices*, Physical Review 109 (1958), 1492–1505. - D. Arnold, G. David, D. Jerison, S. Mayboroda, and M. Filoche,
*The effective confining potential of quantum states in disordered media*, arXiv:1505.02684 - Laurent Bakri,
*Quantitative uniqueness for Schrödinger operator*, Indiana Univ. Math. J.**61**(2012), no. 4, 1565–1580. MR**3085618**, DOI 10.1512/iumj.2012.61.4713 - Catherine Bandle,
*Isoperimetric inequalities and applications*, Monographs and Studies in Mathematics, vol. 7, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1980. MR**572958** - Rodrigo Bañuelos and Tom Carroll,
*Brownian motion and the fundamental frequency of a drum*, Duke Math. J.**75**(1994), no. 3, 575–602. MR**1291697**, DOI 10.1215/S0012-7094-94-07517-0 - René Carmona,
*Pointwise bounds for Schrödinger eigenstates*, Comm. Math. Phys.**62**(1978), no. 2, 97–106. MR**505706** - R. Carmona and B. Simon,
*Pointwise bounds on eigenfunctions and wave packets in $N$-body quantum systems. V. Lower bounds and path integrals*, Comm. Math. Phys.**80**(1981), no. 1, 59–98. MR**623152** - René Carmona, Wen Chen Masters, and Barry Simon,
*Relativistic Schrödinger operators: asymptotic behavior of the eigenfunctions*, J. Funct. Anal.**91**(1990), no. 1, 117–142. MR**1054115**, DOI 10.1016/0022-1236(90)90049-Q - Xavier Fernique,
*Intégrabilité des vecteurs gaussiens*, C. R. Acad. Sci. Paris Sér. A-B**270**(1970), A1698–A1699 (French). MR**266263** - Marcel Filoche and Svitlana Mayboroda,
*Universal mechanism for Anderson and weak localization*, Proc. Natl. Acad. Sci. USA**109**(2012), no. 37, 14761–14766. MR**2990982**, DOI 10.1073/pnas.1120432109 - Marcel Filoche and Svitlana Mayboroda,
*The landscape of Anderson localization in a disordered medium*, Fractal geometry and dynamical systems in pure and applied mathematics. II. Fractals in applied mathematics, Contemp. Math., vol. 601, Amer. Math. Soc., Providence, RI, 2013, pp. 113–121. MR**3203829**, DOI 10.1090/conm/601/11916 - David Gilbarg and Neil S. Trudinger,
*Elliptic partial differential equations of second order*, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR**737190**, DOI 10.1007/978-3-642-61798-0 - Steen Markvorsen and Vicente Palmer,
*Torsional rigidity of minimal submanifolds*, Proc. London Math. Soc. (3)**93**(2006), no. 1, 253–272. MR**2235949**, DOI 10.1017/S0024611505015716 - Barry Simon,
*Brownian motion, $L^{p}$ properties of Schrödinger operators and the localization of binding*, J. Functional Analysis**35**(1980), no. 2, 215–229. MR**561987**, DOI 10.1016/0022-1236(80)90006-3 - Stefan Steinerberger,
*Lower bounds on nodal sets of eigenfunctions via the heat flow*, Comm. Partial Differential Equations**39**(2014), no. 12, 2240–2261. MR**3259555**, DOI 10.1080/03605302.2014.942739 - Michiel van den Berg,
*Large time asymptotics of the heat flow*, Quart. J. Math. Oxford Ser. (2)**41**(1990), no. 162, 245–253. MR**1053665**, DOI 10.1093/qmath/41.2.245 - Sijue Wu,
*Homogenization of differential operators*, Acta Math. Appl. Sin. Engl. Ser.**18**(2002), no. 1, 9–14. MR**2010891**, DOI 10.1007/s102550200016 - Steve Zelditch,
*Local and global analysis of eigenfunctions on Riemannian manifolds*, Handbook of geometric analysis. No. 1, Adv. Lect. Math. (ALM), vol. 7, Int. Press, Somerville, MA, 2008, pp. 545–658. MR**2483375**

## Additional Information

**Stefan Steinerberger**- Affiliation: Department of Mathematics, Yale University, 10 Hillhouse Avenue, New Haven, Connecticut 06511
- MR Author ID: 869041
- ORCID: 0000-0002-7745-4217
- Email: stefan.steinerberger@yale.edu
- Received by editor(s): May 23, 2016
- Published electronically: February 24, 2017
- Communicated by: Svitlana Mayboroda
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**145**(2017), 2895-2907 - MSC (2010): Primary 35P20; Secondary 82B44
- DOI: https://doi.org/10.1090/proc/13343
- MathSciNet review: 3637939