Localization of quantum states and landscape functions
HTML articles powered by AMS MathViewer
- by Stefan Steinerberger
- Proc. Amer. Math. Soc. 145 (2017), 2895-2907
- DOI: https://doi.org/10.1090/proc/13343
- Published electronically: February 24, 2017
- PDF | Request permission
Abstract:
Eigenfunctions in inhomogeneous media can have strong localization properties. Filoche and Mayboroda showed that the function $u$ solving $(-\Delta + V)u = 1$ controls the behavior of eigenfunctions $(-\Delta + V)\phi = \lambda \phi$ via the inequality \[ |\phi (x)| \leq \lambda u(x) \|\phi \|_{L^{\infty }}.\] This inequality has proven to be remarkably effective in predicting localization and recently Arnold, David, Jerison, Mayboroda and Filoche connected $1/u$ to decay properties of eigenfunctions. We aim to clarify properties of the landscape: the main ingredient is a localized variation estimate obtained from writing $\phi (x)$ as an average over Brownian motion $\omega (\cdot )$ started in $x$ \[ \phi (x) = \mathbb {E}_{x}\left (\phi (\omega (t)) e^{\lambda t-\int _{0}^{t}{V(\omega (z))dz}} \right ).\] This variation estimate will guarantee that $\phi$ has to change at least by a factor of 2 in a small ball, which implicitly creates a landscape whose relationship with $1/u$ we discuss.References
- Shmuel Agmon, Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of $N$-body Schrödinger operators, Mathematical Notes, vol. 29, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1982. MR 745286
- P. W. Anderson, Absence of Diffusion in Certain Random Lattices, Physical Review 109 (1958), 1492–1505.
- D. Arnold, G. David, D. Jerison, S. Mayboroda, and M. Filoche, The effective confining potential of quantum states in disordered media, arXiv:1505.02684
- Laurent Bakri, Quantitative uniqueness for Schrödinger operator, Indiana Univ. Math. J. 61 (2012), no. 4, 1565–1580. MR 3085618, DOI 10.1512/iumj.2012.61.4713
- Catherine Bandle, Isoperimetric inequalities and applications, Monographs and Studies in Mathematics, vol. 7, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1980. MR 572958
- Rodrigo Bañuelos and Tom Carroll, Brownian motion and the fundamental frequency of a drum, Duke Math. J. 75 (1994), no. 3, 575–602. MR 1291697, DOI 10.1215/S0012-7094-94-07517-0
- René Carmona, Pointwise bounds for Schrödinger eigenstates, Comm. Math. Phys. 62 (1978), no. 2, 97–106. MR 505706, DOI 10.1007/BF01248665
- R. Carmona and B. Simon, Pointwise bounds on eigenfunctions and wave packets in $N$-body quantum systems. V. Lower bounds and path integrals, Comm. Math. Phys. 80 (1981), no. 1, 59–98. MR 623152, DOI 10.1007/BF01213596
- René Carmona, Wen Chen Masters, and Barry Simon, Relativistic Schrödinger operators: asymptotic behavior of the eigenfunctions, J. Funct. Anal. 91 (1990), no. 1, 117–142. MR 1054115, DOI 10.1016/0022-1236(90)90049-Q
- Xavier Fernique, Intégrabilité des vecteurs gaussiens, C. R. Acad. Sci. Paris Sér. A-B 270 (1970), A1698–A1699 (French). MR 266263
- Marcel Filoche and Svitlana Mayboroda, Universal mechanism for Anderson and weak localization, Proc. Natl. Acad. Sci. USA 109 (2012), no. 37, 14761–14766. MR 2990982, DOI 10.1073/pnas.1120432109
- Marcel Filoche and Svitlana Mayboroda, The landscape of Anderson localization in a disordered medium, Fractal geometry and dynamical systems in pure and applied mathematics. II. Fractals in applied mathematics, Contemp. Math., vol. 601, Amer. Math. Soc., Providence, RI, 2013, pp. 113–121. MR 3203829, DOI 10.1090/conm/601/11916
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- Steen Markvorsen and Vicente Palmer, Torsional rigidity of minimal submanifolds, Proc. London Math. Soc. (3) 93 (2006), no. 1, 253–272. MR 2235949, DOI 10.1017/S0024611505015716
- Barry Simon, Brownian motion, $L^{p}$ properties of Schrödinger operators and the localization of binding, J. Functional Analysis 35 (1980), no. 2, 215–229. MR 561987, DOI 10.1016/0022-1236(80)90006-3
- Stefan Steinerberger, Lower bounds on nodal sets of eigenfunctions via the heat flow, Comm. Partial Differential Equations 39 (2014), no. 12, 2240–2261. MR 3259555, DOI 10.1080/03605302.2014.942739
- Michiel van den Berg, Large time asymptotics of the heat flow, Quart. J. Math. Oxford Ser. (2) 41 (1990), no. 162, 245–253. MR 1053665, DOI 10.1093/qmath/41.2.245
- Sijue Wu, Homogenization of differential operators, Acta Math. Appl. Sin. Engl. Ser. 18 (2002), no. 1, 9–14. MR 2010891, DOI 10.1007/s102550200016
- Steve Zelditch, Local and global analysis of eigenfunctions on Riemannian manifolds, Handbook of geometric analysis. No. 1, Adv. Lect. Math. (ALM), vol. 7, Int. Press, Somerville, MA, 2008, pp. 545–658. MR 2483375
Bibliographic Information
- Stefan Steinerberger
- Affiliation: Department of Mathematics, Yale University, 10 Hillhouse Avenue, New Haven, Connecticut 06511
- MR Author ID: 869041
- ORCID: 0000-0002-7745-4217
- Email: stefan.steinerberger@yale.edu
- Received by editor(s): May 23, 2016
- Published electronically: February 24, 2017
- Communicated by: Svitlana Mayboroda
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 2895-2907
- MSC (2010): Primary 35P20; Secondary 82B44
- DOI: https://doi.org/10.1090/proc/13343
- MathSciNet review: 3637939