New equations for central configurations and generic finiteness
HTML articles powered by AMS MathViewer
- by Thiago Dias
- Proc. Amer. Math. Soc. 145 (2017), 3069-3084
- DOI: https://doi.org/10.1090/proc/13427
- Published electronically: January 6, 2017
- PDF | Request permission
Abstract:
We consider the finiteness problem for central configurations of the $n$-body problem. We prove that, for $n\geq 4$, there exists a (Zariski) closed subset $B$ in the mass space $\mathbb {R}^{n}$, such that if $(m_1,\dots ,m_n) \in \mathbb {R}^n\setminus B$, then there is a finite number of corresponding classes of $(n-2)$-dimensional central configurations for potential associated to a semi-integer exponent. Also, we obtain trilinear homogeneous polynomial equations of degree $3$ for central configurations of fixed dimension and, for each integer $k \geq 1$, we show that the set of mutual distances associated to a $k$-dimensional central configuration is contained in a determinantal algebraic set.References
- Alain Albouy, Integral manifolds of the $n$-body problem, Invent. Math. 114 (1993), no. 3, 463–488. MR 1244910, DOI 10.1007/BF01232677
- Alain Albouy, Symétrie des configurations centrales de quatre corps, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 2, 217–220 (French, with English and French summaries). MR 1320359
- Alain Albouy, On a paper of Moeckel on central configurations, Regular and Chaotic Dynamics 8 (2003), no. 2, 133–142., DOI 10.1070/RD2003v008n02ABEH000232
- Alain Albouy and Vadim Kaloshin, Finiteness of central configurations of five bodies in the plane, Ann. of Math. (2) 176 (2012), no. 1, 535–588. MR 2925390, DOI 10.4007/annals.2012.176.1.10
- Hildeberto Cabral and Florin Diacu (eds.), Classical and celestial mechanics, Princeton University Press, Princeton, NJ, 2002. The Recife lectures; Lectures at the Federal University of Pernambuco (UFPE), Recife, 1993–1999. MR 1974777
- Jean Chazy, Sur certaines trajectoires du probleme des n corps, Bull. Astron 35 (1918), 321–389., DOI 10.3406/bastr.1918.13419
- K. D’Andrea and M. Sombra, The Cayley-Menger determinant is irreducible for $n\geq 3$, Sibirsk. Mat. Zh. 46 (2005), no. 1, 90–97 (Russian, with Russian summary); English transl., Siberian Math. J. 46 (2005), no. 1, 71–76. MR 2141304, DOI 10.1007/s11202-005-0007-0
- Otto Dziobek, Über einen merkwürdigen Fall des Vielkörperproblems, Astron. Nach. 152 (1900).
- Leonhard Euler, De motu rectilineo trium corporum se mutuo attahentium, Novi Comm. Acd. Sci. Imp. Petrop. 11 (1767).
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Vol. 52, Wiley-interscience, 2011.
- Yusuke Hagihara, Celestial mechanics, Vol. 1, MIT Press, 1975.
- Marshall Hampton and Anders Jensen, Finiteness of spatial central configurations in the five-body problem, Celestial Mech. Dynam. Astronom. 109 (2011), no. 4, 321–332. MR 2783101, DOI 10.1007/s10569-010-9328-9
- Marshall Hampton and Richard Moeckel, Finiteness of relative equilibria of the four-body problem, Invent. Math. 163 (2006), no. 2, 289–312. MR 2207019, DOI 10.1007/s00222-005-0461-0
- Joseph-Louis Lagrange, Essai sur le probleme des trois corps, Prix de lÁcadémie royale des Sciences de Paris 9 (1772), 229–324.
- Kenneth Meyer, Glen Hall, and Dan Offin, Introduction to Hamiltonian dynamical systems and the N-body problem, Vol. 77, Springer, 2008.
- J. Milnor, On the Betti numbers of real varieties, Proc. Amer. Math. Soc. 15 (1964), 275–280. MR 161339, DOI 10.1090/S0002-9939-1964-0161339-9
- Richard Moeckel, Generic finiteness for Dziobek configurations, Trans. Amer. Math. Soc. 353 (2001), no. 11, 4673–4686. MR 1851188, DOI 10.1090/S0002-9947-01-02828-8
- Richard Moeckel, Lectures on central configurations, CRM Publications, 2014.
- Forest Ray Moulton, The straight line solutions of the problem of N bodies, The Annals of Mathematics 12 (1910), no. 1, 1–17., DOI 10.2307/2007159
- René Thom, Sur l’homologie des variétés algebrique réeles, In Differential and Combinatorial Topology , posted on (1965), 255–265., DOI 10.1515/9781400874842-016
- Donald G. Saari, On the role and the properties of $n$-body central configurations, Celestial Mech. 21 (1980), no. 1, 9–20. MR 564603, DOI 10.1007/BF01230241
- Steve Smale, Mathematical problems for the next century, Math. Intelligencer 20 (1998), no. 2, 7–15. MR 1631413, DOI 10.1007/BF03025291
- Igor R. Shafarevich, Basic algebraic geometry. 1, 2nd ed., Springer-Verlag, Berlin, 1994. Varieties in projective space; Translated from the 1988 Russian edition and with notes by Miles Reid. MR 1328833
- Karen E. Smith, Lauri Kahanpää, Pekka Kekäläinen, and William Traves, An invitation to algebraic geometry, Universitext, Springer-Verlag, New York, 2000. MR 1788561, DOI 10.1007/978-1-4757-4497-2
- Thiago Dias, Finitude Genérica de Configurações Centrais de Dimensão $(n-2)$ com Potenciais expoentes inteiros, PhD Thesys, Federal University of Pernambuco, 2013.
- Aurel Wintner, The Analytical Foundations of Celestial Mechanics, Princeton Mathematical Series, vol. 5, Princeton University Press, Princeton, N. J., 1941. MR 0005824
- W. L. Williams, Permanent configurations in the problem of five bodies, Trans. Amer. Math. Soc. 44 (1938), no. 3, 563–579. MR 1501982, DOI 10.1090/S0002-9947-1938-1501982-4
Bibliographic Information
- Thiago Dias
- Affiliation: Departamento de Matemática, Universidade Federal Rural de Pernambuco - Rua Dom Manuel de Medeiros s/n, 52171-900, Recife, Pernambuco, Brasil
- Email: thiago.diasoliveira@ufrpe.br
- Received by editor(s): January 22, 2016
- Received by editor(s) in revised form: June 18, 2016, and August 8, 2016
- Published electronically: January 6, 2017
- Communicated by: Yingfei Yi
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 3069-3084
- MSC (2010): Primary 70F10, 70F15, 37N05, 14A10
- DOI: https://doi.org/10.1090/proc/13427
- MathSciNet review: 3637954