A quantitative Riemann-Lebesgue lemma with application to equations with memory
HTML articles powered by AMS MathViewer
- by Filippo Dell’Oro, Enrico Laeng and Vittorino Pata
- Proc. Amer. Math. Soc. 145 (2017), 2909-2915
- DOI: https://doi.org/10.1090/proc/13641
- Published electronically: March 27, 2017
- PDF | Request permission
Abstract:
An elementary proof of a quantitative version of the Riemann-Lebesgue lemma for functions supported on the half line is given. Applications to differential models with memory are discussed.References
- W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc. 306 (1988), no. 2, 837–852. MR 933321, DOI 10.1090/S0002-9947-1988-0933321-3
- Charles J. K. Batty and Thomas Duyckaerts, Non-uniform stability for bounded semi-groups on Banach spaces, J. Evol. Equ. 8 (2008), no. 4, 765–780. MR 2460938, DOI 10.1007/s00028-008-0424-1
- N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular variation, John Wiley & Sons, New York, 1971.
- Constantine M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal. 37 (1970), 297–308. MR 281400, DOI 10.1007/BF00251609
- V. Danese and F. Dell’Oro, Lack of exponential stability for a class of second-order systems with memory, Proc. Roy. Soc. Edinburgh Sect. A (in press).
- Hugo D. Fernández Sare, Jaime E. Muñoz Rivera, and Ramón Quintanilla, On the rate of decay in interacting continua with memory, J. Differential Equations 251 (2011), no. 12, 3583–3605. MR 2837696, DOI 10.1016/j.jde.2011.08.015
- Claudio Giorgi, Maria Grazia Naso, and Vittorino Pata, Energy decay of electromagnetic systems with memory, Math. Models Methods Appl. Sci. 15 (2005), no. 10, 1489–1502. MR 2168942, DOI 10.1142/S0218202505000844
- Maurizio Grasselli, Jaime E. Muñoz Rivera, and Marco Squassina, Asymptotic behavior of a thermoviscoelastic plate with memory effects, Asymptot. Anal. 63 (2009), no. 1-2, 55–84. MR 2524534, DOI 10.3233/ASY-2008-0928
- Jaime E. Muñoz Rivera and Maria Grazia Naso, Optimal energy decay rate for a class of weakly dissipative second-order systems with memory, Appl. Math. Lett. 23 (2010), no. 7, 743–746. MR 2639871, DOI 10.1016/j.aml.2010.02.016
- Jaime E. Muñoz Rivera, Maria Grazia Naso, and Elena Vuk, Asymptotic behaviour of the energy for electromagnetic systems with memory, Math. Methods Appl. Sci. 27 (2004), no. 7, 819–841. MR 2055321, DOI 10.1002/mma.473
- David Vernon Widder, The Laplace Transform, Princeton Mathematical Series, vol. 6, Princeton University Press, Princeton, N. J., 1941. MR 0005923
Bibliographic Information
- Filippo Dell’Oro
- Affiliation: Dipartimento di Matematica, Politecnico di Milano, Via Bonardi 9, 20133 Milano, Italy
- MR Author ID: 958659
- Email: filippo.delloro@polimi.it
- Enrico Laeng
- Affiliation: Dipartimento di Matematica, Politecnico di Milano, Via Bonardi 9, 20133 Milano, Italy
- MR Author ID: 295007
- Email: enrico.laeng@polimi.it
- Vittorino Pata
- Affiliation: Dipartimento di Matematica, Politecnico di Milano, Via Bonardi 9, 20133 Milano, Italy
- MR Author ID: 358540
- Email: vittorino.pata@polimi.it
- Received by editor(s): June 6, 2016
- Published electronically: March 27, 2017
- Communicated by: Alexander Iosevich
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 2909-2915
- MSC (2010): Primary 42A38, 37L15, 45K05
- DOI: https://doi.org/10.1090/proc/13641
- MathSciNet review: 3637940