Monotonicity of zeros of Jacobi-Angelesco polynomials
HTML articles powered by AMS MathViewer
- by Eliel J. C. dos Santos PDF
- Proc. Amer. Math. Soc. 145 (2017), 4741-4750 Request permission
Abstract:
We study the monotonic behaviour of the zeros of the multiple Jacobi-Angelesco orthogonal polynomials, in the diagonal case, with respect to the parameters $\alpha ,\beta$ and $\gamma$. We prove that the zeros are monotonic functions of $\alpha$ and $\gamma$ and consider some special cases of how the zeros depend on $\beta$, especially in the presence of symmetry. As a consequence we obtain results about monotonicity of zeros of Jacobi-Laguerre and Laguerre-Hermite multiple orthogonal polynomials too.References
- Dimitar K. Dimitrov, On a conjecture concerning monotonicity of zeros of ultraspherical polynomials, J. Approx. Theory 85 (1996), no. 1, 88–97. MR 1382052, DOI 10.1006/jath.1996.0030
- Geno Nikolov and Rumen Uluchev (eds.), Constructive theory of functions, Prof. Marin Drinov Academic Publishing House, Sofia, 2012. In memory of Borislav Bojanov; Papers from the International Conference held in Sozopol, June 3–10, 2010. MR 3075365
- Dimitar K. Dimitrov and A. Sri Ranga, Zeros of a family of hypergeometric para-orthogonal polynomials on the unit circle, Math. Nachr. 286 (2013), no. 17-18, 1778–1791. MR 3145170, DOI 10.1002/mana.201200181
- Dimitar K. Dimitrov and Romildo O. Rodrigues, On the behaviour of zeros of Jacobi polynomials, J. Approx. Theory 116 (2002), no. 2, 224–239. MR 1911080, DOI 10.1006/jath.2002.3671
- Árpád Elbert and Andrea Laforgia, Upper bounds for the zeros of ultraspherical polynomials, J. Approx. Theory 61 (1990), no. 1, 88–97. MR 1047150, DOI 10.1016/0021-9045(90)90025-L
- Árpád Elbert and Martin E. Muldoon, On the derivative with respect to a parameter of a zero of a Sturm-Liouville function, SIAM J. Math. Anal. 25 (1994), no. 2, 354–364. MR 1266563, DOI 10.1137/S0036141092228878
- Mourad E. H. Ismail, Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, vol. 98, Cambridge University Press, Cambridge, 2009. With two chapters by Walter Van Assche; With a foreword by Richard A. Askey; Reprint of the 2005 original. MR 2542683
- Mourad E. H. Ismail, Monotonicity of zeros of orthogonal polynomials, $q$-series and partitions (Minneapolis, MN, 1988) IMA Vol. Math. Appl., vol. 18, Springer, New York, 1989, pp. 177–190. MR 1019851, DOI 10.1007/978-1-4684-0637-5_{1}4
- Mourand E. H. Ismail and Xin Li, Bound on the extreme zeros of orthogonal polynomials, Proc. Amer. Math. Soc. 115 (1992), no. 1, 131–140. MR 1079891, DOI 10.1090/S0002-9939-1992-1079891-5
- Mourad E. H. Ismail and Martin E. Muldoon, A discrete approach to monotonicity of zeros of orthogonal polynomials, Trans. Amer. Math. Soc. 323 (1991), no. 1, 65–78. MR 1014251, DOI 10.1090/S0002-9947-1991-1014251-8
- André Markoff, Sur les racines de certaines équations, Math. Ann. 27 (1886), no. 2, 177–182 (French). MR 1510373, DOI 10.1007/BF01452056
- Wladimir Markoff and J. Grossmann, Über Polynome, die in einem gegebenen Intervalle möglichst wenig von Null abweichen, Math. Ann. 77 (1916), no. 2, 213–258 (German). MR 1511855, DOI 10.1007/BF01456902
- Theodore J. Rivlin, Chebyshev polynomials, 2nd ed., Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1990. From approximation theory to algebra and number theory. MR 1060735
- V. N. Sorokin, Simultaneous Padé approximations in the case of finite and infinite intervals, Izv. Vyssh. Uchebn. Zaved. Mat. 8 (1984), 45–52 (English, with Russian summary). MR 768656
- V. N. Sorokin, Generalization of Laguerre polynomials and convergence of simultaneous Padé approximants, Uspekhi Mat. Nauk 41 (1986), no. 1(247), 207–208 (Russian). MR 832428
- Gábor Szegő, Orthogonal polynomials, 4th ed., American Mathematical Society Colloquium Publications, Vol. XXIII, American Mathematical Society, Providence, R.I., 1975. MR 0372517
- Walter Van Assche and Els Coussement, Some classical multiple orthogonal polynomials, J. Comput. Appl. Math. 127 (2001), no. 1-2, 317–347. Numerical analysis 2000, Vol. V, Quadrature and orthogonal polynomials. MR 1808581, DOI 10.1016/S0377-0427(00)00503-3
Additional Information
- Eliel J. C. dos Santos
- Affiliation: IMECC, Universidade Estadual de Campinas, Campinas-SP, 13083-859 Brazil
- MR Author ID: 1138359
- Email: elielubarana@gmail.com
- Received by editor(s): March 11, 2016
- Received by editor(s) in revised form: May 13, 2016
- Published electronically: August 1, 2017
- Additional Notes: The author’s research was supported by the Brazilian Science Foundation CAPES
- Communicated by: Mourad E. H. Ismail
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 4741-4750
- MSC (2010): Primary 33C45, 26C10
- DOI: https://doi.org/10.1090/proc/13319
- MathSciNet review: 3691991