## Monotonicity of zeros of Jacobi-Angelesco polynomials

HTML articles powered by AMS MathViewer

- by Eliel J. C. dos Santos PDF
- Proc. Amer. Math. Soc.
**145**(2017), 4741-4750 Request permission

## Abstract:

We study the monotonic behaviour of the zeros of the multiple Jacobi-Angelesco orthogonal polynomials, in the diagonal case, with respect to the parameters $\alpha ,\beta$ and $\gamma$. We prove that the zeros are monotonic functions of $\alpha$ and $\gamma$ and consider some special cases of how the zeros depend on $\beta$, especially in the presence of symmetry. As a consequence we obtain results about monotonicity of zeros of Jacobi-Laguerre and Laguerre-Hermite multiple orthogonal polynomials too.## References

- Dimitar K. Dimitrov,
*On a conjecture concerning monotonicity of zeros of ultraspherical polynomials*, J. Approx. Theory**85**(1996), no. 1, 88–97. MR**1382052**, DOI 10.1006/jath.1996.0030 - Geno Nikolov and Rumen Uluchev (eds.),
*Constructive theory of functions*, Prof. Marin Drinov Academic Publishing House, Sofia, 2012. In memory of Borislav Bojanov; Papers from the International Conference held in Sozopol, June 3–10, 2010. MR**3075365** - Dimitar K. Dimitrov and A. Sri Ranga,
*Zeros of a family of hypergeometric para-orthogonal polynomials on the unit circle*, Math. Nachr.**286**(2013), no. 17-18, 1778–1791. MR**3145170**, DOI 10.1002/mana.201200181 - Dimitar K. Dimitrov and Romildo O. Rodrigues,
*On the behaviour of zeros of Jacobi polynomials*, J. Approx. Theory**116**(2002), no. 2, 224–239. MR**1911080**, DOI 10.1006/jath.2002.3671 - Árpád Elbert and Andrea Laforgia,
*Upper bounds for the zeros of ultraspherical polynomials*, J. Approx. Theory**61**(1990), no. 1, 88–97. MR**1047150**, DOI 10.1016/0021-9045(90)90025-L - Árpád Elbert and Martin E. Muldoon,
*On the derivative with respect to a parameter of a zero of a Sturm-Liouville function*, SIAM J. Math. Anal.**25**(1994), no. 2, 354–364. MR**1266563**, DOI 10.1137/S0036141092228878 - Mourad E. H. Ismail,
*Classical and quantum orthogonal polynomials in one variable*, Encyclopedia of Mathematics and its Applications, vol. 98, Cambridge University Press, Cambridge, 2009. With two chapters by Walter Van Assche; With a foreword by Richard A. Askey; Reprint of the 2005 original. MR**2542683** - Mourad E. H. Ismail,
*Monotonicity of zeros of orthogonal polynomials*, $q$-series and partitions (Minneapolis, MN, 1988) IMA Vol. Math. Appl., vol. 18, Springer, New York, 1989, pp. 177–190. MR**1019851**, DOI 10.1007/978-1-4684-0637-5_{1}4 - Mourand E. H. Ismail and Xin Li,
*Bound on the extreme zeros of orthogonal polynomials*, Proc. Amer. Math. Soc.**115**(1992), no. 1, 131–140. MR**1079891**, DOI 10.1090/S0002-9939-1992-1079891-5 - Mourad E. H. Ismail and Martin E. Muldoon,
*A discrete approach to monotonicity of zeros of orthogonal polynomials*, Trans. Amer. Math. Soc.**323**(1991), no. 1, 65–78. MR**1014251**, DOI 10.1090/S0002-9947-1991-1014251-8 - André Markoff,
*Sur les racines de certaines équations*, Math. Ann.**27**(1886), no. 2, 177–182 (French). MR**1510373**, DOI 10.1007/BF01452056 - Wladimir Markoff and J. Grossmann,
*Über Polynome, die in einem gegebenen Intervalle möglichst wenig von Null abweichen*, Math. Ann.**77**(1916), no. 2, 213–258 (German). MR**1511855**, DOI 10.1007/BF01456902 - Theodore J. Rivlin,
*Chebyshev polynomials*, 2nd ed., Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1990. From approximation theory to algebra and number theory. MR**1060735** - V. N. Sorokin,
*Simultaneous Padé approximations in the case of finite and infinite intervals*, Izv. Vyssh. Uchebn. Zaved. Mat.**8**(1984), 45–52 (English, with Russian summary). MR**768656** - V. N. Sorokin,
*Generalization of Laguerre polynomials and convergence of simultaneous Padé approximants*, Uspekhi Mat. Nauk**41**(1986), no. 1(247), 207–208 (Russian). MR**832428** - Gábor Szegő,
*Orthogonal polynomials*, 4th ed., American Mathematical Society Colloquium Publications, Vol. XXIII, American Mathematical Society, Providence, R.I., 1975. MR**0372517** - Walter Van Assche and Els Coussement,
*Some classical multiple orthogonal polynomials*, J. Comput. Appl. Math.**127**(2001), no. 1-2, 317–347. Numerical analysis 2000, Vol. V, Quadrature and orthogonal polynomials. MR**1808581**, DOI 10.1016/S0377-0427(00)00503-3

## Additional Information

**Eliel J. C. dos Santos**- Affiliation: IMECC, Universidade Estadual de Campinas, Campinas-SP, 13083-859 Brazil
- MR Author ID: 1138359
- Email: elielubarana@gmail.com
- Received by editor(s): March 11, 2016
- Received by editor(s) in revised form: May 13, 2016
- Published electronically: August 1, 2017
- Additional Notes: The author’s research was supported by the Brazilian Science Foundation CAPES
- Communicated by: Mourad E. H. Ismail
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**145**(2017), 4741-4750 - MSC (2010): Primary 33C45, 26C10
- DOI: https://doi.org/10.1090/proc/13319
- MathSciNet review: 3691991