## Unlikely intersections for curves in additive groups over positive characteristic

HTML articles powered by AMS MathViewer

- by W. D. Brownawell and D. W. Masser PDF
- Proc. Amer. Math. Soc.
**145**(2017), 4617-4627 Request permission

## Abstract:

The conjectures associated with the names of Zilber-Pink greatly generalize results associated with the names of Manin-Mumford and Mordell-Lang, but unlike the latter they are at present restricted to zero characteristic. Recently the second author made a start on removing this restriction by studying multiplicative groups over positive characteristic, and here we go further for additive groups with extra Frobenius structure. We state a conjecture for curves in general dimension and we prove it in three dimensions. We also give an example where the finite set in question can be explicitly determined.## References

- E. Bombieri, P. Habegger, D. Masser, and U. Zannier,
*A note on Maurin’s theorem*, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl.**21**(2010), no. 3, 251–260. MR**2677603**, DOI 10.4171/RLM/570 - E. Bombieri, D. Masser, and U. Zannier,
*Intersecting a curve with algebraic subgroups of multiplicative groups*, Internat. Math. Res. Notices**20**(1999), 1119–1140. MR**1728021**, DOI 10.1155/S1073792899000628 - E. Bombieri, D. Masser, and U. Zannier,
*Anomalous subvarieties—structure theorems and applications*, Int. Math. Res. Not. IMRN**19**(2007), Art. ID rnm057, 33. MR**2359537**, DOI 10.1093/imrn/rnm057 - Enrico Bombieri, David Masser, and Umberto Zannier,
*Intersecting a plane with algebraic subgroups of multiplicative groups*, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)**7**(2008), no. 1, 51–80. MR**2413672** - E. Bombieri, D. Masser, and U. Zannier,
*On unlikely intersections of complex varieties with tori*, Acta Arith.**133**(2008), no. 4, 309–323. MR**2457263**, DOI 10.4064/aa133-4-2 - Zoé Chatzidakis, Dragos Ghioca, David Masser, and Guillaume Maurin,
*Unlikely, likely and impossible intersections without algebraic groups*, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl.**24**(2013), no. 4, 485–501. MR**3129750**, DOI 10.4171/RLM/663 - Paula B. Cohen and Umberto Zannier,
*Multiplicative dependence and bounded height, an example*, Algebraic number theory and Diophantine analysis (Graz, 1998) de Gruyter, Berlin, 2000, pp. 93–101. MR**1770456** - Dragos Ghioca and Rahim Moosa,
*Division points on subvarieties of isotrivial semi-abelian varieties*, Int. Math. Res. Not. , posted on (2006), Art. ID 65437, 23. MR**2264715**, DOI 10.1155/IMRN/2006/65437 - Dragos Ghioca,
*The isotrivial case in the Mordell-Lang theorem*, Trans. Amer. Math. Soc.**360**(2008), no. 7, 3839–3856. MR**2386248**, DOI 10.1090/S0002-9947-08-04388-2 - P. Habegger,
*On the bounded height conjecture*, Int. Math. Res. Not. IMRN**5**(2009), 860–886. MR**2482128**, DOI 10.1093/imrn/rnn149 - Philipp Habegger and Jonathan Pila,
*O-minimality and certain atypical intersections*, Ann. Sci. Éc. Norm. Supér. (4)**49**(2016), no. 4, 813–858 (English, with English and French summaries). MR**3552014**, DOI 10.24033/asens.2296 - Ehud Hrushovski,
*The Mordell-Lang conjecture for function fields*, J. Amer. Math. Soc.**9**(1996), no. 3, 667–690. MR**1333294**, DOI 10.1090/S0894-0347-96-00202-0 - Dominik J. Leitner,
*Linear equations over multiplicative groups in positive characteristic*, Acta Arith.**153**(2012), no. 4, 325–347. MR**2925376**, DOI 10.4064/aa153-4-1 - D. Leitner,
*Linear equations over multiplicative groups in positive characteristic II*, submitted. - Rahim Moosa and Thomas Scanlon,
*$F$-structures and integral points on semiabelian varieties over finite fields*, Amer. J. Math.**126**(2004), no. 3, 473–522. MR**2058382** - D. Masser and U. Zannier,
*Torsion points on families of squares of elliptic curves*, Math. Ann.**352**(2012), no. 2, 453–484. MR**2874963**, DOI 10.1007/s00208-011-0645-4 - David Masser and Umberto Zannier,
*Torsion points on families of simple abelian surfaces and Pell’s equation over polynomial rings*, J. Eur. Math. Soc. (JEMS)**17**(2015), no. 9, 2379–2416. With an appendix by E. V. Flynn. MR**3420511**, DOI 10.4171/JEMS/560 - D. Masser,
*Unlikely intersections for curves in multiplicative groups over positive characteristic*, Q. J. Math.**65**(2014), no. 2, 505–515. MR**3230373**, DOI 10.1093/qmath/hat016 - Guillaume Maurin,
*Courbes algébriques et équations multiplicatives*, Math. Ann.**341**(2008), no. 4, 789–824 (French, with English summary). MR**2407327**, DOI 10.1007/s00208-008-0212-9 - R. Pink,
*A common generalization of the conjectures of André-Oort, Manin-Mumford, and Mordell-Lang*, manuscript dated 17th April 2005 (13 pages). - Gaël Rémond,
*Intersection de sous-groupes et de sous-variétés. III*, Comment. Math. Helv.**84**(2009), no. 4, 835–863 (French, with English summary). MR**2534482**, DOI 10.4171/CMH/183 - Evelina Viada,
*The intersection of a curve with algebraic subgroups in a product of elliptic curves*, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)**2**(2003), no. 1, 47–75. MR**1990974** - Umberto Zannier,
*Some problems of unlikely intersections in arithmetic and geometry*, Annals of Mathematics Studies, vol. 181, Princeton University Press, Princeton, NJ, 2012. With appendixes by David Masser. MR**2918151** - Boris Zilber,
*Exponential sums equations and the Schanuel conjecture*, J. London Math. Soc. (2)**65**(2002), no. 1, 27–44. MR**1875133**, DOI 10.1112/S0024610701002861

## Additional Information

**W. D. Brownawell**- Affiliation: Department of Mathematics, The Pennsylvania State University, University Park, Pennsylvania 16802
- MR Author ID: 42245
- Email: wdb@math.psu.edu
**D. W. Masser**- Affiliation: Departement Mathematik und Informatik, Universität Basel, Spiegelgasse 1, 4051 Basel, Switzerland
- MR Author ID: 121080
- Email: David.Masser@unibas.ch
- Received by editor(s): October 9, 2016
- Received by editor(s) in revised form: November 30, 2016
- Published electronically: May 26, 2017
- Communicated by: Matthew A. Papanikolas
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**145**(2017), 4617-4627 - MSC (2010): Primary 11G20, 14G17, 14H99
- DOI: https://doi.org/10.1090/proc/13617
- MathSciNet review: 3691981