Subalgebras of finite codimension in semiprojective $C^*$-algebras
HTML articles powered by AMS MathViewer
- by Dominic Enders
- Proc. Amer. Math. Soc. 145 (2017), 4795-4805
- DOI: https://doi.org/10.1090/proc/13620
- Published electronically: May 26, 2017
- PDF | Request permission
Abstract:
We show that semiprojectivity of a $C^*$-algebra is preserved when passing to $C^*$-subalgebras of finite codimension. In particular, any pullback of two semiprojective $C^*$-algebras over a finite-dimensional $C^*$-algebra is again semiprojective.References
- Bruce Blackadar, Shape theory for $C^\ast$-algebras, Math. Scand. 56 (1985), no. 2, 249–275. MR 813640, DOI 10.7146/math.scand.a-12100
- Bruce Blackadar, Semiprojectivity in simple $C^*$-algebras, Operator algebras and applications, Adv. Stud. Pure Math., vol. 38, Math. Soc. Japan, Tokyo, 2004, pp. 1–17. MR 2059799, DOI 10.2969/aspm/03810001
- Joachim Cuntz, A new look at $KK$-theory, $K$-Theory 1 (1987), no. 1, 31–51. MR 899916, DOI 10.1007/BF00533986
- Marius Dădărlat, Shape theory and asymptotic morphisms for $C^*$-algebras, Duke Math. J. 73 (1994), no. 3, 687–711. MR 1262931, DOI 10.1215/S0012-7094-94-07327-4
- Marius Dadarlat, Continuous fields of $C^*$-algebras over finite dimensional spaces, Adv. Math. 222 (2009), no. 5, 1850–1881. MR 2555914, DOI 10.1016/j.aim.2009.06.019
- S. Eilers and T. Katsura, Semiprojectivity and properly infinite projections in graph $C^*$-algebras, preprint, 2015, arXiv:1512.07277v1.
- Søren Eilers, Terry A. Loring, and Gert K. Pedersen, Stability of anticommutation relations: an application of noncommutative CW complexes, J. Reine Angew. Math. 499 (1998), 101–143. MR 1631120
- Søren Eilers, Terry A. Loring, and Gert K. Pedersen, Morphisms of extensions of $C^*$-algebras: pushing forward the Busby invariant, Adv. Math. 147 (1999), no. 1, 74–109. MR 1725815, DOI 10.1006/aima.1999.1834
- D. Enders, On the structure of certain classes of semiprojective $C^*$-algebras, PhD thesis, WWU Münster, 2013.
- Dominic Enders, A characterization of semiprojectivity for subhomogeneous $C^*$-algebras, Doc. Math. 21 (2016), 987–1049. MR 3548139, DOI 10.4171/dm/551
- S. Eilers, G. Restorff, and E. Ruiz, Strong classification of extensions of classifiable $C^*$-algebras, preprint, 2013, arXiv:1301.7695v1.
- G. Gong, H. Lin and Z. Niu, Classification of finite simple amenable $\mathcal {Z}$-stable $C^*$-algebras, preprint, 2015, arXiv:1501.00135v6.
- Terry A. Loring, Stable relations. II. Corona semiprojectivity and dimension-drop $C^*$-algebras, Pacific J. Math. 172 (1996), no. 2, 461–475. MR 1386627, DOI 10.2140/pjm.1996.172.461
- Terry A. Loring, Lifting solutions to perturbing problems in $C^*$-algebras, Fields Institute Monographs, vol. 8, American Mathematical Society, Providence, RI, 1997. MR 1420863, DOI 10.1090/fim/008
- T. A. Loring, Perturbation questions in the Cuntz picture of $K$-theory, $K$-Theory 11 (1997), no. 2, 161–193. MR 1444287, DOI 10.1023/A:1007762330088
- Terry A. Loring and Gert K. Pedersen, Projectivity, transitivity and AF-telescopes, Trans. Amer. Math. Soc. 350 (1998), no. 11, 4313–4339. MR 1616003, DOI 10.1090/S0002-9947-98-02353-8
- Gert K. Pedersen, $C^{\ast }$-algebras and their automorphism groups, London Mathematical Society Monographs, vol. 14, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1979. MR 548006
- A. P. W. Sørensen. On a counterexample to a conjecture by Blackadar, Operator Algebra and Dynamics, Springer Proceedings in Mathematics & Statistics, Vol. 58, 2013.
- Richard Zekri, A new description of Kasparov’s theory of $C^*$-algebra extensions, J. Funct. Anal. 84 (1989), no. 2, 441–471. MR 1001468, DOI 10.1016/0022-1236(89)90105-5
Bibliographic Information
- Dominic Enders
- Affiliation: Westfälische Wilhelms-Universität, Fachbereich Mathematik, Einsteinstrasse 62, 48149 Münster, Germany
- MR Author ID: 1101375
- Email: d.enders@uni-muenster.de
- Received by editor(s): July 20, 2016
- Received by editor(s) in revised form: December 5, 2016
- Published electronically: May 26, 2017
- Additional Notes: This work was supported by the SFB 878 Groups, Geometry and Actions and the Danish National Research Foundation through the Centre for Symmetry and Deformation (DNRF92)
- Communicated by: Adrian Ioana
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 4795-4805
- MSC (2010): Primary 46L05
- DOI: https://doi.org/10.1090/proc/13620
- MathSciNet review: 3691996