## A weighted maximal inequality for differentially subordinate martingales

HTML articles powered by AMS MathViewer

- by Rodrigo Bañuelos and Adam Osękowski
- Proc. Amer. Math. Soc.
**146**(2018), 2263-2275 - DOI: https://doi.org/10.1090/proc/13912
- Published electronically: January 12, 2018
- PDF | Request permission

## Abstract:

The paper contains the proof of a weighted Fefferman-Stein inequality in a probabilistic setting. Suppose that $f=(f_n)_{n\geq 0}$, $g=(g_n)_{n\geq 0}$ are martingales such that $g$ is differentially subordinate to $f$, and let $w=(w_n)_{n\geq 0}$ be a weight, i.e., a nonnegative, uniformly integrable martingale. Denoting by $Mf=\sup _{n\geq 0}|f_n|$, $Mw=\sup _{n\geq 0}w_n$ the maximal functions of $f$ and $w$, we prove the weighted inequality \begin{equation*} ||g||_{L^1(w)}\leq C||Mf||_{L^1(Mw)}, \end{equation*} where $C=3+\sqrt {2}+4\ln 2=7.186802\ldots$ . The proof rests on the existence of a special function enjoying appropriate majorization and concavity.## References

- Rodrigo Bañuelos and Gang Wang,
*Sharp inequalities for martingales with applications to the Beurling-Ahlfors and Riesz transforms*, Duke Math. J.**80**(1995), no. 3, 575–600. MR**1370109**, DOI 10.1215/S0012-7094-95-08020-X - D. L. Burkholder,
*Boundary value problems and sharp inequalities for martingale transforms*, Ann. Probab.**12**(1984), no. 3, 647–702. MR**744226**, DOI 10.1214/aop/1176993220 - Donald L. Burkholder,
*Explorations in martingale theory and its applications*, École d’Été de Probabilités de Saint-Flour XIX—1989, Lecture Notes in Math., vol. 1464, Springer, Berlin, 1991, pp. 1–66. MR**1108183**, DOI 10.1007/BFb0085167 - Donald L. Burkholder,
*Sharp norm comparison of martingale maximal functions and stochastic integrals*, Proceedings of the Norbert Wiener Centenary Congress, 1994 (East Lansing, MI, 1994) Proc. Sympos. Appl. Math., vol. 52, Amer. Math. Soc., Providence, RI, 1997, pp. 343–358. MR**1440921**, DOI 10.1090/psapm/052/1440921 - C. Fefferman and E. M. Stein,
*Some maximal inequalities*, Amer. J. Math.**93**(1971), 107–115. MR**284802**, DOI 10.2307/2373450 - Tuomas Hytönen,
*On Petermichl’s dyadic shift and the Hilbert transform*, C. R. Math. Acad. Sci. Paris**346**(2008), no. 21-22, 1133–1136 (English, with English and French summaries). MR**2464252**, DOI 10.1016/j.crma.2008.09.021 - Tuomas Hytönen, Carlos Pérez, Sergei Treil, and Alexander Volberg,
*Sharp weighted estimates for dyadic shifts and the $A_2$ conjecture*, J. Reine Angew. Math.**687**(2014), 43–86. MR**3176607**, DOI 10.1515/crelle-2012-0047 - Andrei K. Lerner, Sheldy Ombrosi, and Carlos Pérez,
*Sharp $A_1$ bounds for Calderón-Zygmund operators and the relationship with a problem of Muckenhoupt and Wheeden*, Int. Math. Res. Not. IMRN**6**(2008), Art. ID rnm161, 11. MR**2427454**, DOI 10.1093/imrn/rnm161 - Andrei K. Lerner, Sheldy Ombrosi, and Carlos Pérez,
*$A_1$ bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden*, Math. Res. Lett.**16**(2009), no. 1, 149–156. MR**2480568**, DOI 10.4310/MRL.2009.v16.n1.a14 - F. L. Nazarov, A. Reznikov, V. Vasyunin, and A. Volberg,
*Weak norm estimates of weighted singular operators and Bellman functions*. Manuscript (2010). - F. L. Nazarov and S. R. Treĭl′,
*The hunt for a Bellman function: applications to estimates for singular integral operators and to other classical problems of harmonic analysis*, Algebra i Analiz**8**(1996), no. 5, 32–162 (Russian, with Russian summary); English transl., St. Petersburg Math. J.**8**(1997), no. 5, 721–824. MR**1428988** - F. Nazarov, S. Treil, and A. Volberg,
*The Bellman functions and two-weight inequalities for Haar multipliers*, J. Amer. Math. Soc.**12**(1999), no. 4, 909–928. MR**1685781**, DOI 10.1090/S0894-0347-99-00310-0 - F. Nazarov, S. Treil, and A. Volberg,
*Bellman function in stochastic control and harmonic analysis*, Systems, approximation, singular integral operators, and related topics (Bordeaux, 2000) Oper. Theory Adv. Appl., vol. 129, Birkhäuser, Basel, 2001, pp. 393–423. MR**1882704** - A. Osękowski,
*Sharp martingale and semimartingale inequalities*, Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series) [Mathematics Institute of the Polish Academy of Sciences. Mathematical Monographs (New Series)], vol. 72, Birkhäuser/Springer Basel AG, Basel, 2012. MR**2964297**, DOI 10.1007/978-3-0348-0370-0 - Adam Osȩkowski,
*Maximal inequalities for continuous martingales and their differential subordinates*, Proc. Amer. Math. Soc.**139**(2011), no. 2, 721–734. MR**2736351**, DOI 10.1090/S0002-9939-2010-10539-7 - Adam Osȩkowski,
*Maximal inequalities for martingales and their differential subordinates*, J. Theoret. Probab.**27**(2014), no. 1, 1–21. MR**3174213**, DOI 10.1007/s10959-012-0458-8 - Stefanie Petermichl,
*Dyadic shifts and a logarithmic estimate for Hankel operators with matrix symbol*, C. R. Acad. Sci. Paris Sér. I Math.**330**(2000), no. 6, 455–460 (English, with English and French summaries). MR**1756958**, DOI 10.1016/S0764-4442(00)00162-2 - Maria Carmen Reguera,
*On Muckenhoupt-Wheeden conjecture*, Adv. Math.**227**(2011), no. 4, 1436–1450. MR**2799801**, DOI 10.1016/j.aim.2011.03.009 - Maria Carmen Reguera and Christoph Thiele,
*The Hilbert transform does not map $L^1(Mw)$ to $L^{1,\infty }(w)$*, Math. Res. Lett.**19**(2012), no. 1, 1–7. MR**2923171**, DOI 10.4310/MRL.2012.v19.n1.a1 - L. Slavin and V. Vasyunin,
*Sharp results in the integral-form John-Nirenberg inequality*, Trans. Amer. Math. Soc.**363**(2011), no. 8, 4135–4169. MR**2792983**, DOI 10.1090/S0002-9947-2011-05112-3 - Elias M. Stein,
*Singular integrals and differentiability properties of functions*, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR**0290095** - Vasily Vasyunin and Alexander Volberg,
*Monge-Ampère equation and Bellman optimization of Carleson embedding theorems*, Linear and complex analysis, Amer. Math. Soc. Transl. Ser. 2, vol. 226, Amer. Math. Soc., Providence, RI, 2009, pp. 195–238. MR**2500520**, DOI 10.1090/trans2/226/16

## Bibliographic Information

**Rodrigo Bañuelos**- Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
- MR Author ID: 30705
- Email: banuelos@math.purdue.edu
**Adam Osękowski**- Affiliation: Department of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
- ORCID: 0000-0002-8905-2418
- Email: ados@mimuw.edu.pl
- Received by editor(s): January 4, 2017
- Received by editor(s) in revised form: July 30, 2017
- Published electronically: January 12, 2018
- Additional Notes: The first author was supported in part by NSF Grant #0603701-DMS

The second author was supported in part by the NCN grant DEC-2014/14/E/ST1/00532. - Communicated by: Svitlana Mayboroda
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**146**(2018), 2263-2275 - MSC (2010): Primary 60G44; Secondary 42B25
- DOI: https://doi.org/10.1090/proc/13912
- MathSciNet review: 3767376