A weighted maximal inequality for differentially subordinate martingales
HTML articles powered by AMS MathViewer
- by Rodrigo Bañuelos and Adam Osękowski
- Proc. Amer. Math. Soc. 146 (2018), 2263-2275
- DOI: https://doi.org/10.1090/proc/13912
- Published electronically: January 12, 2018
- PDF | Request permission
Abstract:
The paper contains the proof of a weighted Fefferman-Stein inequality in a probabilistic setting. Suppose that $f=(f_n)_{n\geq 0}$, $g=(g_n)_{n\geq 0}$ are martingales such that $g$ is differentially subordinate to $f$, and let $w=(w_n)_{n\geq 0}$ be a weight, i.e., a nonnegative, uniformly integrable martingale. Denoting by $Mf=\sup _{n\geq 0}|f_n|$, $Mw=\sup _{n\geq 0}w_n$ the maximal functions of $f$ and $w$, we prove the weighted inequality \begin{equation*} ||g||_{L^1(w)}\leq C||Mf||_{L^1(Mw)}, \end{equation*} where $C=3+\sqrt {2}+4\ln 2=7.186802\ldots$ . The proof rests on the existence of a special function enjoying appropriate majorization and concavity.References
- Rodrigo Bañuelos and Gang Wang, Sharp inequalities for martingales with applications to the Beurling-Ahlfors and Riesz transforms, Duke Math. J. 80 (1995), no. 3, 575–600. MR 1370109, DOI 10.1215/S0012-7094-95-08020-X
- D. L. Burkholder, Boundary value problems and sharp inequalities for martingale transforms, Ann. Probab. 12 (1984), no. 3, 647–702. MR 744226, DOI 10.1214/aop/1176993220
- Donald L. Burkholder, Explorations in martingale theory and its applications, École d’Été de Probabilités de Saint-Flour XIX—1989, Lecture Notes in Math., vol. 1464, Springer, Berlin, 1991, pp. 1–66. MR 1108183, DOI 10.1007/BFb0085167
- Donald L. Burkholder, Sharp norm comparison of martingale maximal functions and stochastic integrals, Proceedings of the Norbert Wiener Centenary Congress, 1994 (East Lansing, MI, 1994) Proc. Sympos. Appl. Math., vol. 52, Amer. Math. Soc., Providence, RI, 1997, pp. 343–358. MR 1440921, DOI 10.1090/psapm/052/1440921
- C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107–115. MR 284802, DOI 10.2307/2373450
- Tuomas Hytönen, On Petermichl’s dyadic shift and the Hilbert transform, C. R. Math. Acad. Sci. Paris 346 (2008), no. 21-22, 1133–1136 (English, with English and French summaries). MR 2464252, DOI 10.1016/j.crma.2008.09.021
- Tuomas Hytönen, Carlos Pérez, Sergei Treil, and Alexander Volberg, Sharp weighted estimates for dyadic shifts and the $A_2$ conjecture, J. Reine Angew. Math. 687 (2014), 43–86. MR 3176607, DOI 10.1515/crelle-2012-0047
- Andrei K. Lerner, Sheldy Ombrosi, and Carlos Pérez, Sharp $A_1$ bounds for Calderón-Zygmund operators and the relationship with a problem of Muckenhoupt and Wheeden, Int. Math. Res. Not. IMRN 6 (2008), Art. ID rnm161, 11. MR 2427454, DOI 10.1093/imrn/rnm161
- Andrei K. Lerner, Sheldy Ombrosi, and Carlos Pérez, $A_1$ bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden, Math. Res. Lett. 16 (2009), no. 1, 149–156. MR 2480568, DOI 10.4310/MRL.2009.v16.n1.a14
- F. L. Nazarov, A. Reznikov, V. Vasyunin, and A. Volberg, Weak norm estimates of weighted singular operators and Bellman functions. Manuscript (2010).
- F. L. Nazarov and S. R. Treĭl′, The hunt for a Bellman function: applications to estimates for singular integral operators and to other classical problems of harmonic analysis, Algebra i Analiz 8 (1996), no. 5, 32–162 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 8 (1997), no. 5, 721–824. MR 1428988
- F. Nazarov, S. Treil, and A. Volberg, The Bellman functions and two-weight inequalities for Haar multipliers, J. Amer. Math. Soc. 12 (1999), no. 4, 909–928. MR 1685781, DOI 10.1090/S0894-0347-99-00310-0
- F. Nazarov, S. Treil, and A. Volberg, Bellman function in stochastic control and harmonic analysis, Systems, approximation, singular integral operators, and related topics (Bordeaux, 2000) Oper. Theory Adv. Appl., vol. 129, Birkhäuser, Basel, 2001, pp. 393–423. MR 1882704
- A. Osękowski, Sharp martingale and semimartingale inequalities, Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series) [Mathematics Institute of the Polish Academy of Sciences. Mathematical Monographs (New Series)], vol. 72, Birkhäuser/Springer Basel AG, Basel, 2012. MR 2964297, DOI 10.1007/978-3-0348-0370-0
- Adam Osȩkowski, Maximal inequalities for continuous martingales and their differential subordinates, Proc. Amer. Math. Soc. 139 (2011), no. 2, 721–734. MR 2736351, DOI 10.1090/S0002-9939-2010-10539-7
- Adam Osȩkowski, Maximal inequalities for martingales and their differential subordinates, J. Theoret. Probab. 27 (2014), no. 1, 1–21. MR 3174213, DOI 10.1007/s10959-012-0458-8
- Stefanie Petermichl, Dyadic shifts and a logarithmic estimate for Hankel operators with matrix symbol, C. R. Acad. Sci. Paris Sér. I Math. 330 (2000), no. 6, 455–460 (English, with English and French summaries). MR 1756958, DOI 10.1016/S0764-4442(00)00162-2
- Maria Carmen Reguera, On Muckenhoupt-Wheeden conjecture, Adv. Math. 227 (2011), no. 4, 1436–1450. MR 2799801, DOI 10.1016/j.aim.2011.03.009
- Maria Carmen Reguera and Christoph Thiele, The Hilbert transform does not map $L^1(Mw)$ to $L^{1,\infty }(w)$, Math. Res. Lett. 19 (2012), no. 1, 1–7. MR 2923171, DOI 10.4310/MRL.2012.v19.n1.a1
- L. Slavin and V. Vasyunin, Sharp results in the integral-form John-Nirenberg inequality, Trans. Amer. Math. Soc. 363 (2011), no. 8, 4135–4169. MR 2792983, DOI 10.1090/S0002-9947-2011-05112-3
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Vasily Vasyunin and Alexander Volberg, Monge-Ampère equation and Bellman optimization of Carleson embedding theorems, Linear and complex analysis, Amer. Math. Soc. Transl. Ser. 2, vol. 226, Amer. Math. Soc., Providence, RI, 2009, pp. 195–238. MR 2500520, DOI 10.1090/trans2/226/16
Bibliographic Information
- Rodrigo Bañuelos
- Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
- MR Author ID: 30705
- Email: banuelos@math.purdue.edu
- Adam Osękowski
- Affiliation: Department of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
- ORCID: 0000-0002-8905-2418
- Email: ados@mimuw.edu.pl
- Received by editor(s): January 4, 2017
- Received by editor(s) in revised form: July 30, 2017
- Published electronically: January 12, 2018
- Additional Notes: The first author was supported in part by NSF Grant #0603701-DMS
The second author was supported in part by the NCN grant DEC-2014/14/E/ST1/00532. - Communicated by: Svitlana Mayboroda
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 146 (2018), 2263-2275
- MSC (2010): Primary 60G44; Secondary 42B25
- DOI: https://doi.org/10.1090/proc/13912
- MathSciNet review: 3767376