On the fundamental tone of immersions and submersions
HTML articles powered by AMS MathViewer
- by Marcos P. Cavalcante and Fernando Manfio
- Proc. Amer. Math. Soc. 146 (2018), 2963-2971
- DOI: https://doi.org/10.1090/proc/13969
- Published electronically: February 8, 2018
- PDF | Request permission
Abstract:
In this paper we obtain lower bound estimates of the spectrum of the Laplace-Beltrami operator on complete submanifolds with bounded mean curvature, whose ambient space admits a Riemannian submersion over a Riemannian manifold with negative sectional curvature. Our main theorem generalizes many previously known estimates and applies for both immersions and submersions.References
- Pierre Bérard, Philippe Castillon, and Marcos Cavalcante, Eigenvalue estimates for hypersurfaces in $\Bbb H^m\times \Bbb R$ and applications, Pacific J. Math. 253 (2011), no. 1, 19–35. MR 2869432, DOI 10.2140/pjm.2011.253.19
- G. Pacelli Bessa, Jorge H. de Lira, Stefano Pigola, and Alberto G. Setti, Curvature estimates for submanifolds immersed into horoballs and horocylinders, J. Math. Anal. Appl. 431 (2015), no. 2, 1000–1007. MR 3365851, DOI 10.1016/j.jmaa.2015.06.010
- G. Pacelli Bessa and J. Fábio Montenegro, Eigenvalue estimates for submanifolds with locally bounded mean curvature, Ann. Global Anal. Geom. 24 (2003), no. 3, 279–290. MR 1996771, DOI 10.1023/A:1024750713006
- Philippe Castillon, Sur l’opérateur de stabilité des sous-variétés à courbure moyenne constante dans l’espace hyperbolique, Manuscripta Math. 94 (1997), no. 3, 385–400 (French). MR 1485444, DOI 10.1007/BF02677861
- Leung-Fu Cheung and Pui-Fai Leung, Eigenvalue estimates for submanifolds with bounded mean curvature in the hyperbolic space, Math. Z. 236 (2001), no. 3, 525–530. MR 1821303, DOI 10.1007/PL00004840
- Jaigyoung Choe and Robert Gulliver, Isoperimetric inequalities on minimal submanifolds of space forms, Manuscripta Math. 77 (1992), no. 2-3, 169–189. MR 1188579, DOI 10.1007/BF02567052
- Richard H. Escobales Jr., Riemannian submersions with totally geodesic fibers, J. Differential Geometry 10 (1975), 253–276. MR 370423
- H. P. McKean, An upper bound to the spectrum of $\Delta$ on a manifold of negative curvature, J. Differential Geometry 4 (1970), 359–366. MR 266100, DOI 10.4310/jdg/1214429509
- Barrett O’Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459–469. MR 200865
- R. Schoen and S.-T. Yau, Lectures on differential geometry, Conference Proceedings and Lecture Notes in Geometry and Topology, I, International Press, Cambridge, MA, 1994. Lecture notes prepared by Wei Yue Ding, Kung Ching Chang [Gong Qing Zhang], Jia Qing Zhong and Yi Chao Xu; Translated from the Chinese by Ding and S. Y. Cheng; With a preface translated from the Chinese by Kaising Tso. MR 1333601
- Alain R. Veeravalli, Une remarque sur l’inégalité de McKean, Comment. Math. Helv. 78 (2003), no. 4, 884–888 (French, with French summary). MR 2016701, DOI 10.1007/s00014-003-0782-9
Bibliographic Information
- Marcos P. Cavalcante
- Affiliation: Instituto de Matemática, Universidade Federal de Alagoas, Maceió, AL, CEP 57072-970, Brazil
- MR Author ID: 813473
- Email: marcos@pos.mat.ufal.br
- Fernando Manfio
- Affiliation: ICMC, Universidade de São Paulo, São Carlos, SP, CEP 13561-060, Brazil
- MR Author ID: 845196
- Email: manfio@icmc.usp.br
- Received by editor(s): May 15, 2017
- Received by editor(s) in revised form: September 18, 2017
- Published electronically: February 8, 2018
- Communicated by: Guofang Wei
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 146 (2018), 2963-2971
- MSC (2010): Primary 35P15, 53C20
- DOI: https://doi.org/10.1090/proc/13969
- MathSciNet review: 3787357