Explicit formulas for $C^{1,1}$ Glaeser-Whitney extensions of $1$-Taylor fields in Hilbert spaces
HTML articles powered by AMS MathViewer
- by Aris Daniilidis, Mounir Haddou, Erwan Le Gruyer and Olivier Ley
- Proc. Amer. Math. Soc. 146 (2018), 4487-4495
- DOI: https://doi.org/10.1090/proc/14012
- Published electronically: July 13, 2018
- PDF | Request permission
Abstract:
We give a simple alternative proof for the $C^{1,1}$–convex extension problem which has been introduced and studied by D. Azagra and C. Mudarra (2017). As an application, we obtain an easy constructive proof for the Glaeser-Whitney problem of $C^{1,1}$ extensions on a Hilbert space. In both cases we provide explicit formulae for the extensions. For the Glaeser-Whitney problem the obtained extension is almost minimal, that is, minimal up to a multiplicative factor in the sense of Le Gruyer (2009).References
- Matthias Aschenbrenner and Andreas Fischer, Definable versions of theorems by Kirszbraun and Helly, Proc. Lond. Math. Soc. (3) 102 (2011), no. 3, 468–502. MR 2783134, DOI 10.1112/plms/pdq029
- Daniel Azagra and Carlos Mudarra, An extension theorem for convex functions of class $C^{1,1}$ on Hilbert spaces, J. Math. Anal. Appl. 446 (2017), no. 2, 1167–1182. MR 3563028, DOI 10.1016/j.jmaa.2016.09.015
- Daniel Azagra and Carlos Mudarra, Whitney extension theorems for convex functions of the classes $C^1$ and $C^{1,\omega }$, Proc. Lond. Math. Soc. (3) 114 (2017), no. 1, 133–158. MR 3653079, DOI 10.1112/plms.12006
- E. N. Barron, P. Cannarsa, and R. Jensen, Regularity of Hamilton-Jacobi equations when forward is backward, Indiana Univ. Math. J. 48 (1999), no. 2, 385–409. MR 1722801, DOI 10.1512/iumj.1999.48.1647
- Heinz H. Bauschke and Xianfu Wang, Firmly nonexpansive and Kirszbraun-Valentine extensions: a constructive approach via monotone operator theory, Nonlinear analysis and optimization I. Nonlinear analysis, Contemp. Math., vol. 513, Amer. Math. Soc., Providence, RI, 2010, pp. 55–64. MR 2668238, DOI 10.1090/conm/513/10075
- Jonathan M. Borwein and Chris H. Hamilton, Symbolic Fenchel conjugation, Math. Program. 116 (2009), no. 1-2, Ser. B, 17–35. MR 2421271, DOI 10.1007/s10107-007-0134-4
- Yuri Brudnyi and Pavel Shvartsman, Whitney’s extension problem for multivariate $C^{1,\omega }$-functions, Trans. Amer. Math. Soc. 353 (2001), no. 6, 2487–2512. MR 1814079, DOI 10.1090/S0002-9947-01-02756-8
- Piermarco Cannarsa and Carlo Sinestrari, Semiconcave functions, Hamilton-Jacobi equations, and optimal control, Progress in Nonlinear Differential Equations and their Applications, vol. 58, Birkhäuser Boston, Inc., Boston, MA, 2004. MR 2041617, DOI 10.1007/b138356
- Charles L. Fefferman, A sharp form of Whitney’s extension theorem, Ann. of Math. (2) 161 (2005), no. 1, 509–577. MR 2150391, DOI 10.4007/annals.2005.161.509
- Charles Fefferman, Arie Israel, and Garving K. Luli, Interpolation of data by smooth nonnegative functions, Rev. Mat. Iberoam. 33 (2017), no. 1, 305–324. MR 3615453, DOI 10.4171/RMI/938
- Charles Fefferman, Arie Israel, and Garving K. Luli, Finiteness principles for smooth selection, Geom. Funct. Anal. 26 (2016), no. 2, 422–477. MR 3513877, DOI 10.1007/s00039-016-0366-7
- Georges Glaeser, Étude de quelques algèbres tayloriennes, J. Analyse Math. 6 (1958), 1–124; erratum, insert to 6 (1958), no. 2 (French). MR 101294, DOI 10.1007/BF02790231
- Ariel Herbert-Voss, Matthew J. Hirn, and Frederick McCollum, Computing minimal interpolants in $C^{1,1}(\Bbb {R}^d)$, Rev. Mat. Iberoam. 33 (2017), no. 1, 29–66. MR 3615442, DOI 10.4171/RMI/927
- J.-M. Lasry and P.-L. Lions, A remark on regularization in Hilbert spaces, Israel J. Math. 55 (1986), no. 3, 257–266. MR 876394, DOI 10.1007/BF02765025
- Erwan Le Gruyer, Minimal Lipschitz extensions to differentiable functions defined on a Hilbert space, Geom. Funct. Anal. 19 (2009), no. 4, 1101–1118. MR 2570317, DOI 10.1007/s00039-009-0027-1
- Erwan Y. Le Gruyer and Thanh Viet Phan, Sup-inf explicit formulas for minimal Lipschitz extensions for 1-fields on $\Bbb {R}^n$, J. Math. Anal. Appl. 424 (2015), no. 2, 1161–1185. MR 3292721, DOI 10.1016/j.jmaa.2014.11.067
- Claude Lemaréchal and Claudia Sagastizábal, Practical aspects of the Moreau-Yosida regularization: theoretical preliminaries, SIAM J. Optim. 7 (1997), no. 2, 367–385. MR 1443624, DOI 10.1137/S1052623494267127
- Yves Lucet, Fast Moreau envelope computation. I. Numerical algorithms, Numer. Algorithms 43 (2006), no. 3, 235–249 (2007). MR 2310940, DOI 10.1007/s11075-006-9056-0
- E. J. McShane, Extension of range of functions, Bull. Amer. Math. Soc. 40 (1934), no. 12, 837–842. MR 1562984, DOI 10.1090/S0002-9904-1934-05978-0
- F. A. Valentine, A Lipschitz condition preserving extension for a vector function, Amer. J. Math. 67 (1945), 83–93. MR 11702, DOI 10.2307/2371917
- John C. Wells, Differentiable functions on Banach spaces with Lipschitz derivatives, J. Differential Geometry 8 (1973), 135–152. MR 370640
- Hassler Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), no. 1, 63–89. MR 1501735, DOI 10.1090/S0002-9947-1934-1501735-3
- Nahum Zobin, Whitney’s problem on extendability of functions and an intrinsic metric, Adv. Math. 133 (1998), no. 1, 96–132. MR 1492787, DOI 10.1006/aima.1997.1685
Bibliographic Information
- Aris Daniilidis
- Affiliation: DIM–CMM, UMI CNRS 2807, Beauchef 851 (Torre Norte, piso 5), Universidad de Chile, Santiago de Chile
- MR Author ID: 613204
- Email: arisd@dim.uchile.cl
- Mounir Haddou
- Affiliation: IRMAR, INSA Rennes, CNRS UMR 6625, 20 avenue des Buttes de Coesmes, F-35708 Rennes, France
- MR Author ID: 601224
- Email: mounir.haddou@insa-rennes.fr
- Erwan Le Gruyer
- Affiliation: IRMAR, INSA Rennes, CNRS UMR 6625, 20 avenue des Buttes de Coesmes, F-35708 Rennes, France
- MR Author ID: 207611
- Email: erwan.le-gruyer@insa-rennes.fr
- Olivier Ley
- Affiliation: IRMAR, INSA Rennes, CNRS UMR 6625, 20 avenue des Buttes de Coesmes, F-35708 Rennes, France
- MR Author ID: 677802
- Email: olivier.ley@insa-rennes.fr
- Received by editor(s): June 12, 2017
- Received by editor(s) in revised form: October 21, 2017
- Published electronically: July 13, 2018
- Additional Notes: This research was supported by the grants: BASAL PFB-03 (Chile), FONDECYT 1171854 (Chile) and MTM2014-59179-C2-1-P (MINECO of Spain and ERDF of EU)
- Communicated by: Yuan Xu
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 146 (2018), 4487-4495
- MSC (2010): Primary 54C20; Secondary 52A41, 26B05, 26B25, 58C25
- DOI: https://doi.org/10.1090/proc/14012
- MathSciNet review: 3834673