Global uniqueness for the fractional semilinear Schrödinger equation
HTML articles powered by AMS MathViewer
- by Ru-Yu Lai and Yi-Hsuan Lin
- Proc. Amer. Math. Soc. 147 (2019), 1189-1199
- DOI: https://doi.org/10.1090/proc/14319
- Published electronically: November 16, 2018
- PDF | Request permission
Abstract:
We study global uniqueness in an inverse problem for the fractional semilinear Schrödinger equation $(-\Delta )^{s}u+q(x,u)=0$ with $s\in (0,1)$. We show that an unknown function $q(x,u)$ can be uniquely determined by the Cauchy data set. In particular, this result holds for any space dimension greater than or equal to $2$. Moreover, we demonstrate the comparison principle and provide an $L^\infty$ estimate for this nonlocal equation under appropriate regularity assumptions.References
- Giovanni Molica Bisci, Vicentiu D. Radulescu, and Raffaella Servadei, Variational methods for nonlocal fractional problems, Encyclopedia of Mathematics and its Applications, vol. 162, Cambridge University Press, Cambridge, 2016. With a foreword by Jean Mawhin. MR 3445279, DOI 10.1017/CBO9781316282397
- Eleonora Di Nezza, Giampiero Palatucci, and Enrico Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521–573. MR 2944369, DOI 10.1016/j.bulsci.2011.12.004
- Serena Dipierro, Xavier Ros-Oton, and Enrico Valdinoci, Nonlocal problems with Neumann boundary conditions, Rev. Mat. Iberoam. 33 (2017), no. 2, 377–416. MR 3651008, DOI 10.4171/RMI/942
- Rupert L. Frank, Enno Lenzmann, and Luis Silvestre, Uniqueness of radial solutions for the fractional Laplacian, Comm. Pure Appl. Math. 69 (2016), no. 9, 1671–1726. MR 3530361, DOI 10.1002/cpa.21591
- Tuhin Ghosh, Yi-Hsuan Lin, and Jingni Xiao, The Calderón problem for variable coefficients nonlocal elliptic operators, Comm. Partial Differential Equations 42 (2017), no. 12, 1923–1961. MR 3764930, DOI 10.1080/03605302.2017.1390681
- Tuhin Ghosh, Mikko Salo, and Gunther Uhlmann, The Calderón problem for the fractional Schrödinger equation, arXiv:1609.09248, 2016.
- Victor Isakov, Uniqueness of recovery of some quasilinear partial differential equations, Comm. Partial Differential Equations 26 (2001), no. 11-12, 1947–1973. MR 1876409, DOI 10.1081/PDE-100107813
- Victor Isakov and Adrian I. Nachman, Global uniqueness for a two-dimensional semilinear elliptic inverse problem, Trans. Amer. Math. Soc. 347 (1995), no. 9, 3375–3390. MR 1311909, DOI 10.1090/S0002-9947-1995-1311909-1
- Victor Isakov and John Sylvester, Global uniqueness for a semilinear elliptic inverse problem, Comm. Pure Appl. Math. 47 (1994), no. 10, 1403–1410. MR 1295934, DOI 10.1002/cpa.3160471005
- Kay Kirkpatrick and Yanzhi Zhang, Fractional Schrödinger dynamics and decoherence, Phys. D 332 (2016), 41–54. MR 3529611, DOI 10.1016/j.physd.2016.05.015
- Mateusz Kwaśnicki, Ten equivalent definitions of the fractional Laplace operator, Fract. Calc. Appl. Anal. 20 (2017), no. 1, 7–51. MR 3613319, DOI 10.1515/fca-2017-0002
- Xavier Ros-Oton, Nonlocal elliptic equations in bounded domains: a survey, Publ. Mat. 60 (2016), no. 1, 3–26. MR 3447732
- Angkana Rüland and Mikko Salo, The fractional Calderón problem: low regularity and stability, preprint, arXiv:1708.06294, 2017.
- Ziqi Sun, Inverse boundary value problems for a class of semilinear elliptic equations, Adv. in Appl. Math. 32 (2004), no. 4, 791–800. MR 2053845, DOI 10.1016/j.aam.2003.06.001
- Ziqi Sun, An inverse boundary-value problem for semilinear elliptic equations, Electron. J. Differential Equations (2010), No. 37, 5. MR 2602870
- G. Uhlmann, Electrical impedance tomography and Calderón’s problem, Inverse Problems 25 (2009), no. 12, 123011, 39. MR 3460047, DOI 10.1088/0266-5611/25/12/123011
- Neslihan Uzar and Sedat Ballikaya, Investigation of classical and fractional Bose-Einstein condensation for harmonic potential, Phys. A 392 (2013), no. 8, 1733–1741. MR 3021917, DOI 10.1016/j.physa.2012.11.039
Bibliographic Information
- Ru-Yu Lai
- Affiliation: School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
- Email: rylai@umn.edu
- Yi-Hsuan Lin
- Affiliation: Department of Mathematics, University of Washington, Seattle, Washington 98195
- Email: yihsuanlin3@gmail.com
- Received by editor(s): November 13, 2017
- Received by editor(s) in revised form: June 27, 2018
- Published electronically: November 16, 2018
- Additional Notes: The second author was supported in part by MOST of Taiwan 160-2917-I-564-048.
- Communicated by: Catherine Sulem
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 1189-1199
- MSC (2010): Primary 35B50, 35R30, 47J05, 65N21, 35R11
- DOI: https://doi.org/10.1090/proc/14319
- MathSciNet review: 3896066