A pointwise bipolar theorem
HTML articles powered by AMS MathViewer
- by Daniel Bartl and Michael Kupper
- Proc. Amer. Math. Soc. 147 (2019), 1483-1495
- DOI: https://doi.org/10.1090/proc/14231
- Published electronically: December 31, 2018
- PDF | Request permission
Abstract:
We provide a pointwise bipolar theorem for $\liminf$-closed convex sets of positive Borel measurable functions on a $\sigma$-compact metric space without the assumption that the polar is a tight set of measures. As applications we derive a version of the transport duality under nontight marginals, and a superhedging duality for semistatic hedging in discrete time.References
- B. Acciaio, M. Beiglböck, F. Penkner, and W. Schachermayer, A model-free version of the fundamental theorem of asset pricing and the super-replication theorem, Math. Finance 26 (2016), no. 2, 233–251. MR 3481303, DOI 10.1111/mafi.12060
- Beatrice Acciaio, Martin Larsson, and Walter Schachermayer, The space of outcomes of semi-static trading strategies need not be closed, Finance Stoch. 21 (2017), no. 3, 741–751. MR 3663642, DOI 10.1007/s00780-017-0329-3
- D. Bartl, P. Cheridito, and M. Kupper, Robust expected utility maximization with medial limits, arXiv:1712.07699, 2017.
- Daniel Bartl, Patrick Cheridito, Michael Kupper, and Ludovic Tangpi, Duality for increasing convex functionals with countably many marginal constraints, Banach J. Math. Anal. 11 (2017), no. 1, 72–89. MR 3571145, DOI 10.1215/17358787-3750133
- Mathias Beiglböck, Alexander M. G. Cox, and Martin Huesmann, Optimal transport and Skorokhod embedding, Invent. Math. 208 (2017), no. 2, 327–400. MR 3639595, DOI 10.1007/s00222-016-0692-2
- Mathias Beiglböck, Pierre Henry-Labordère, and Friedrich Penkner, Model-independent bounds for option prices—a mass transport approach, Finance Stoch. 17 (2013), no. 3, 477–501. MR 3066985, DOI 10.1007/s00780-013-0205-8
- Mathias Beiglböck, Marcel Nutz, and Nizar Touzi, Complete duality for martingale optimal transport on the line, Ann. Probab. 45 (2017), no. 5, 3038–3074. MR 3706738, DOI 10.1214/16-AOP1131
- Mathias Beiglböck and Walter Schachermayer, Duality for Borel measurable cost functions, Trans. Amer. Math. Soc. 363 (2011), no. 8, 4203–4224. MR 2792985, DOI 10.1090/S0002-9947-2011-05174-3
- Bruno Bouchard and Marcel Nutz, Arbitrage and duality in nondominated discrete-time models, Ann. Appl. Probab. 25 (2015), no. 2, 823–859. MR 3313756, DOI 10.1214/14-AAP1011
- W. Brannath and W. Schachermayer, A bipolar theorem for $L^0_+(\Omega ,\scr F,\mathbf P)$, Séminaire de Probabilités, XXXIII, Lecture Notes in Math., vol. 1709, Springer, Berlin, 1999, pp. 349–354. MR 1768009, DOI 10.1007/BFb0096525
- Gustave Choquet, Forme abstraite du téorème de capacitabilité, Ann. Inst. Fourier (Grenoble) 9 (1959), 83–89 (French). MR 112844
- Freddy Delbaen and Walter Schachermayer, A general version of the fundamental theorem of asset pricing, Math. Ann. 300 (1994), no. 3, 463–520. MR 1304434, DOI 10.1007/BF01450498
- Yan Dolinsky and H. Mete Soner, Martingale optimal transport and robust hedging in continuous time, Probab. Theory Related Fields 160 (2014), no. 1-2, 391–427. MR 3256817, DOI 10.1007/s00440-013-0531-y
- A. Galichon, P. Henry-Labordère, and N. Touzi, A stochastic control approach to no-arbitrage bounds given marginals, with an application to lookback options, Ann. Appl. Probab. 24 (2014), no. 1, 312–336. MR 3161649, DOI 10.1214/13-AAP925
- Pierre Henry-Labordère, Model-free hedging, Chapman & Hall/CRC Financial Mathematics Series, CRC Press, Boca Raton, FL, 2017. A martingale optimal transport viewpoint. MR 3699668
- David Hobson, The Skorokhod embedding problem and model-independent bounds for option prices, Paris-Princeton Lectures on Mathematical Finance 2010, Lecture Notes in Math., vol. 2003, Springer, Berlin, 2011, pp. 267–318. MR 2762363, DOI 10.1007/978-3-642-14660-2_{4}
- J. Jacod and A. N. Shiryaev, Local martingales and the fundamental asset pricing theorems in the discrete-time case, Finance Stoch. 2 (1998), no. 3, 259–273. MR 1809522, DOI 10.1007/s007800050040
- L. V. Kantorovich, On a problem of Monge, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 312 (2004), no. Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 11, 15–16 (Russian); English transl., J. Math. Sci. (N.Y.) 133 (2006), no. 4, 1383. MR 2117877, DOI 10.1007/s10958-006-0050-9
- Hans G. Kellerer, Duality theorems for marginal problems, Z. Wahrsch. Verw. Gebiete 67 (1984), no. 4, 399–432. MR 761565, DOI 10.1007/BF00532047
- M. Maggis, T. Meyer-Brandis, and G. Svindland, The fatou property under model uncertainty, arXiv:1610.04085, 2016.
- P. A. Meyer, Limites médiales, d’après Mokobodzki, Séminaire de Probabilités, VII (Univ. Strasbourg, année universitaire 1971–1972), Lecture Notes in Math., Vol. 321, Springer, Berlin-New York, 1973, pp. 198–204. MR 404564
- Dag Normann, Martin’s axiom and medial functions, Math. Scand. 38 (1976), no. 1, 167–176. MR 411973, DOI 10.7146/math.scand.a-11626
- Marcel Nutz, Pathwise construction of stochastic integrals, Electron. Commun. Probab. 17 (2012), no. 24, 7. MR 2950190, DOI 10.1214/ECP.v17-2099
- Cédric Villani, Optimal transport, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338, Springer-Verlag, Berlin, 2009. Old and new. MR 2459454, DOI 10.1007/978-3-540-71050-9
Bibliographic Information
- Daniel Bartl
- Affiliation: Department of Mathematics, University of Konstanz, Universitätstra${\ss }$e 10, 78464, Konstanz, Germany
- MR Author ID: 1186301
- Email: daniel.bartl@uni-konstanz.de
- Michael Kupper
- Affiliation: Department of Mathematics, University of Konstanz, Universitätstra${\ss }$e 10, 78464, Konstanz, Germany
- MR Author ID: 736016
- Email: kupper@uni-konstanz.de
- Received by editor(s): February 8, 2017
- Received by editor(s) in revised form: May 18, 2018
- Published electronically: December 31, 2018
- Communicated by: Thomas Schlumprecht
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 1483-1495
- MSC (2010): Primary 46N10, 46N30, 91G10
- DOI: https://doi.org/10.1090/proc/14231
- MathSciNet review: 3910414