Products of ideals of linear forms in quadric hypersurfaces
HTML articles powered by AMS MathViewer
- by Aldo Conca, Hop D. Nguyen and Thanh Vu
- Proc. Amer. Math. Soc. 147 (2019), 1867-1880
- DOI: https://doi.org/10.1090/proc/14393
- Published electronically: January 18, 2019
- PDF | Request permission
Abstract:
Conca and Herzog proved that any product of ideals of linear forms in a polynomial ring has a linear resolution. The goal of this paper is to establish the same result for any quadric hypersurface. The main tool we develop and use is a flexible version of Derksen and Sidman’s approximation systems.References
- J. Abbott, A.M. Bigatti and G. Lagorio, CoCoA-5: a system for doing computations in commutative algebra. Available at http://cocoa.dima.unige.it.
- Luchezar L. Avramov, Aldo Conca, and Srikanth B. Iyengar, Subadditivity of syzygies of Koszul algebras, Math. Ann. 361 (2015), no. 1-2, 511–534. MR 3302628, DOI 10.1007/s00208-014-1060-4
- Luchezar L. Avramov and David Eisenbud, Regularity of modules over a Koszul algebra, J. Algebra 153 (1992), no. 1, 85–90. MR 1195407, DOI 10.1016/0021-8693(92)90149-G
- Luchezar L. Avramov and Irena Peeva, Finite regularity and Koszul algebras, Amer. J. Math. 123 (2001), no. 2, 275–281. MR 1828224
- Giulio Caviglia, Bounds on the Castelnuovo-Mumford regularity of tensor products, Proc. Amer. Math. Soc. 135 (2007), no. 7, 1949–1957. MR 2299466, DOI 10.1090/S0002-9939-07-08222-6
- M. Chardin, On the behaviour of Castelnuovo-Mumford regularity with respect to some functors. Preprint, http://arxiv.org/abs/0706.2731, (2007).
- Aldo Conca, Universally Koszul algebras, Math. Ann. 317 (2000), no. 2, 329–346. MR 1764242, DOI 10.1007/s002080000100
- Aldo Conca, Universally Koszul algebras defined by monomials, Rend. Sem. Mat. Univ. Padova 107 (2002), 95–99. MR 1926203
- Aldo Conca, Emanuela De Negri, and Maria Evelina Rossi, Koszul algebras and regularity, Commutative algebra, Springer, New York, 2013, pp. 285–315. MR 3051376, DOI 10.1007/978-1-4614-5292-8_{8}
- Aldo Conca and Jürgen Herzog, Castelnuovo-Mumford regularity of products of ideals, Collect. Math. 54 (2003), no. 2, 137–152. MR 1995137
- Aldo Conca, Srikanth B. Iyengar, Hop D. Nguyen, and Tim Römer, Absolutely Koszul algebras and the Backelin-Roos property, Acta Math. Vietnam. 40 (2015), no. 3, 353–374. MR 3395644, DOI 10.1007/s40306-015-0125-0
- Harm Derksen and Jessica Sidman, A sharp bound for the Castelnuovo-Mumford regularity of subspace arrangements, Adv. Math. 172 (2002), no. 2, 151–157. MR 1942401, DOI 10.1016/S0001-8708(02)00019-1
- Harm Derksen and Jessica Sidman, Castelnuovo-Mumford regularity by approximation, Adv. Math. 188 (2004), no. 1, 104–123. MR 2084776, DOI 10.1016/j.aim.2003.10.001
- David Eisenbud, Craig Huneke, and Bernd Ulrich, The regularity of Tor and graded Betti numbers, Amer. J. Math. 128 (2006), no. 3, 573–605. MR 2230917
- D. Grayson and M. Stillman, Macaulay2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2.
- Jürgen Herzog and Srikanth Iyengar, Koszul modules, J. Pure Appl. Algebra 201 (2005), no. 1-3, 154–188. MR 2158753, DOI 10.1016/j.jpaa.2004.12.037
- Srikanth B. Iyengar and Tim Römer, Linearity defects of modules over commutative rings, J. Algebra 322 (2009), no. 9, 3212–3237. MR 2567417, DOI 10.1016/j.jalgebra.2009.04.023
- Hop D. Nguyen and Thanh Vu, Regularity over homomorphisms and a Frobenius characterization of Koszul algebras, J. Algebra 429 (2015), 103–132. MR 3320617, DOI 10.1016/j.jalgebra.2014.12.047
- Hop D. Nguyen and Thanh Vu, Regularity of products over quadratic hypersurfaces. Extended Abstracts Spring 2015, Research Perspectives CRM Barcelona vol. 5, 129–133, Trends in Mathematics, Springer-Birkhäuser, Basel, 2016.
- Jan-Erik Roos, Good and bad Koszul algebras and their Hochschild homology, J. Pure Appl. Algebra 201 (2005), no. 1-3, 295–327. MR 2158761, DOI 10.1016/j.jpaa.2004.12.021
- Jessica Sidman, On the Castelnuovo-Mumford regularity of products of ideal sheaves, Adv. Geom. 2 (2002), no. 3, 219–229. MR 1924756, DOI 10.1515/advg.2002.010
- Ngô Việt Trung, Reduction exponent and degree bound for the defining equations of graded rings, Proc. Amer. Math. Soc. 101 (1987), no. 2, 229–236. MR 902533, DOI 10.1090/S0002-9939-1987-0902533-1
Bibliographic Information
- Aldo Conca
- Affiliation: Dipartimento di Matematica, Università Degli Studi di Genova, Via Dodecaneso 35, 16146 Genova, Italy
- MR Author ID: 335439
- Email: conca@dima.unige.it
- Hop D. Nguyen
- Affiliation: Dipartimento di Matematica, Università Degli Studi di Genova, Via Dodecaneso 35, 16146 Genova, Italy
- Address at time of publication: Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- MR Author ID: 981901
- Email: ngdhop@gmail.com
- Thanh Vu
- Affiliation: Hanoi University of Science and Technology, 1 Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam
- MR Author ID: 1076891
- Email: vuqthanh@gmail.com
- Received by editor(s): November 22, 2017
- Received by editor(s) in revised form: June 2, 2018
- Published electronically: January 18, 2019
- Additional Notes: The first author was supported by the Istituto Nazionale di Alta Matematica (INdAM)
The second author is a Marie Curie fellow of INdAM
The third author was partially supported by the Vietnam National Foundation for Science and Technology Development under grant number 101.04-2016.21. - Communicated by: Jerzy Weyman
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 1867-1880
- MSC (2010): Primary 13D02, 13D05
- DOI: https://doi.org/10.1090/proc/14393
- MathSciNet review: 3937666