Asymptotics of the associated Pollaczek polynomials
HTML articles powered by AMS MathViewer
- by Min-Jie Luo and R. Wong
- Proc. Amer. Math. Soc. 147 (2019), 2583-2597
- DOI: https://doi.org/10.1090/proc/14405
- Published electronically: February 20, 2019
- PDF | Request permission
Abstract:
In this note, we investigate the large-$n$ behavior of the associated Pollaczek polynomials $P_{n}^{\lambda }\left (z;a,b,c\right )$. These polynomials involve four real parameters $\lambda$, $a$, $b$, and $c$, in addition to the complex variable $z$. Asymptotic formulas are derived for these polynomials, when $z$ lies in the complex plane bounded away from the interval of orthogonality $\left (-1,1\right )$, as well as in the interior of the interval of orthogonality. In the process of studying the asymptotic behavior of these polynomials when $z\in \mathbb {C}\setminus [-1,1]$, we found that the existing representations of $P_{n}^{\lambda }\left (z;a,b,c\right )$ do not provide useful information about their large-$n$ asymptotics. Here, we present a new representation in terms of the Gauss hypergeometric functions, from which the large-$n$ asymptotics for $z$ in $\mathbb {C}\setminus [-1,1]$ can be readily obtained. The asymptotic approximation in the interior of the interval of orthogonality is obtained by using asymptotic theory for difference equations.References
- A. D. Alhaidari, H. Bahlouli, and M. E. H. Ismail, The Dirac-Coulomb problem: a mathematical revisit, J. Phys. A 45 (2012), no. 36, 365204, 9. MR 2967907, DOI 10.1088/1751-8113/45/36/365204
- George E. Andrews, Richard Askey, and Ranjan Roy, Special functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999. MR 1688958, DOI 10.1017/CBO9781107325937
- Rui Bo and R. Wong, Asymptotic behavior of the Pollaczek polynomials and their zeros, Stud. Appl. Math. 96 (1996), no. 3, 307–338. MR 1378865, DOI 10.1002/sapm1996963307
- Joaquin Bustoz and Mourad E. H. Ismail, The associated ultraspherical polynomials and their $q$-analogues, Canadian J. Math. 34 (1982), no. 3, 718–736. MR 663314, DOI 10.4153/CJM-1982-049-6
- Jairo A. Charris and Mourad E. H. Ismail, On sieved orthogonal polynomials. V. Sieved Pollaczek polynomials, SIAM J. Math. Anal. 18 (1987), no. 4, 1177–1218. MR 892496, DOI 10.1137/0518086
- Nadhla A. Al-Salam and Mourad E. H. Ismail, On sieved orthogonal polynomials. VIII. Sieved associated Pollaczek polynomials, J. Approx. Theory 68 (1992), no. 3, 306–321. MR 1152221, DOI 10.1016/0021-9045(92)90107-Y
- Jairo A. Charris, Mourad E. H. Ismail, and Sergio Monsalve, On sieved orthogonal polynomials. X. General blocks of recurrence relations, Pacific J. Math. 163 (1994), no. 2, 237–267. MR 1262296
- E. Hendriksen and H. van Rossum, Orthogonal Laurent polynomials, Nederl. Akad. Wetensch. Indag. Math. 48 (1986), no. 1, 17–36. MR 834317
- Erik Hendriksen, Associated Jacobi-Laurent polynomials, J. Comput. Appl. Math. 32 (1990), no. 1-2, 125–141. Extrapolation and rational approximation (Luminy, 1989). MR 1091783, DOI 10.1016/0377-0427(90)90424-X
- Erik Hendriksen, A weight function for the associated Jacobi-Laurent polynomials, J. Comput. Appl. Math. 33 (1990), no. 2, 171–180. MR 1090894, DOI 10.1016/0377-0427(90)90367-9
- Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi, Higher transcendental functions. Vols. I, II, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1953. Based, in part, on notes left by Harry Bateman. MR 0058756
- Mourad E. H. Ismail, Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, vol. 98, Cambridge University Press, Cambridge, 2009. With two chapters by Walter Van Assche; With a foreword by Richard A. Askey; Reprint of the 2005 original. MR 2542683
- Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert, and Charles W. Clark (eds.), NIST handbook of mathematical functions, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010. With 1 CD-ROM (Windows, Macintosh and UNIX). MR 2723248
- Henri Padé, Recherches sur la convergence des développements en fractions continues d’une certaine catégorie de fonctions, Ann. Sci. École Norm. Sup. (3) 24 (1907), 341–400 (French). MR 1509084
- Félix Pollaczek, Systèmes de polynomes biorthogonaux qui généralisent les polynomes ultrasphériques, C. R. Acad. Sci. Paris 228 (1949), 1998–2000 (French). MR 31126
- Félix Pollaczek, Sur une famille de polynômes orthogonaux à quatre paramètres, C. R. Acad. Sci. Paris 230 (1950), 2254–2256 (French). MR 35868
- Félix Pollaczek, Sur une généralisation des polynomes de Jacobi, Mémor. Sci. Math., no. 131, Gauthier-Villars, Paris, 1956 (French). MR 0075339
- G. Szegö, On certain special sets of orthogonal polynomials, Proc. Amer. Math. Soc. 1 (1950), 731–737. MR 42546, DOI 10.1090/S0002-9939-1950-0042546-2
- Gábor Szegő, Orthogonal polynomials, 4th ed., American Mathematical Society Colloquium Publications, Vol. XXIII, American Mathematical Society, Providence, R.I., 1975. MR 0372517
- X.-S. Wang and R. Wong, Asymptotics of orthogonal polynomials via recurrence relations, Anal. Appl. (Singap.) 10 (2012), no. 2, 215–235. MR 2903981, DOI 10.1142/S0219530512500108
- Jet Wimp, Explicit formulas for the associated Jacobi polynomials and some applications, Canad. J. Math. 39 (1987), no. 4, 983–1000. MR 915027, DOI 10.4153/CJM-1987-050-4
- Jet Wimp, Pollaczek polynomials and Padé approximants: some closed-form expressions, J. Comput. Appl. Math. 32 (1990), no. 1-2, 301–310. Extrapolation and rational approximation (Luminy, 1989). MR 1091799, DOI 10.1016/0377-0427(90)90440-B
- R. Wong and H. Li, Asymptotic expansions for second-order linear difference equations, J. Comput. Appl. Math. 41 (1992), no. 1-2, 65–94. Asymptotic methods in analysis and combinatorics. MR 1181710, DOI 10.1016/0377-0427(92)90239-T
Bibliographic Information
- Min-Jie Luo
- Affiliation: Liu Bie Ju Centre for Mathematical Sciences, City University of Hong Kong, Hong Kong, China
- MR Author ID: 1049816
- Email: mathwinnie@live.com
- R. Wong
- Affiliation: Liu Bie Ju Centre for Mathematical Sciences, City University of Hong Kong, Hong Kong, China
- MR Author ID: 192744
- Received by editor(s): August 7, 2018
- Received by editor(s) in revised form: September 12, 2018, and September 19, 2018
- Published electronically: February 20, 2019
- Additional Notes: The first author is the corresponding author.
- Communicated by: Mourad Ismail
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 2583-2597
- MSC (2010): Primary 33C45, 41A60; Secondary 33C05
- DOI: https://doi.org/10.1090/proc/14405
- MathSciNet review: 3951434