Asymptotic stability of nonuniform behaviour
HTML articles powered by AMS MathViewer
- by Davor Dragičević and Weinian Zhang
- Proc. Amer. Math. Soc. 147 (2019), 2437-2451
- DOI: https://doi.org/10.1090/proc/14444
- Published electronically: March 7, 2019
- PDF | Request permission
Abstract:
This paper is devoted to exponential dichotomies of nonautono- mous difference equations. Under the assumptions that $(A_m)_{m\in \mathbb {Z}}$ is a sequence of bounded operators acting on an arbitrary Banach space $X$ that admits a uniform exponential dichotomy and that $(B_m)_{m\in \mathbb {Z}}$ is a sequence of compact operators such that $\lim _{\lvert m\rvert \to \infty } \lVert B_m\rVert =0$, D. Henry proved that either the sequence $(A_m+B_m)_{m\in \mathbb {Z}}$ admits a uniform exponential dichotomy or there exists a bounded nonzero sequence $(x_m)_{m\in \mathbb {Z}}\subset X$ such that $x_{m+1}=(A_m+B_m)x_m$ for each $m\in \mathbb {Z}$. In this paper we prove Henry’s result in the setting of nonuniform exponential dichotomies. Then we obtain a result on roughness of the nonuniform exponential dichotomy and give stability of Lyapunov exponents. In addition, we establish corresponding results for dynamics with continuous time.References
- Wolfgang Arendt, Frank Räbiger, and Ahmed Sourour, Spectral properties of the operator equation $AX+XB=Y$, Quart. J. Math. Oxford Ser. (2) 45 (1994), no. 178, 133–149. MR 1280689, DOI 10.1093/qmath/45.2.133
- Luis Barreira, Davor Dragičević, and Claudia Valls, Strong and weak $(L^p,L^q)$-admissibility, Bull. Sci. Math. 138 (2014), no. 6, 721–741. MR 3251453, DOI 10.1016/j.bulsci.2013.11.005
- Luis Barreira, Davor Dragičević, and Claudia Valls, Exponential dichotomies with respect to a sequence of norms and admissibility, Internat. J. Math. 25 (2014), no. 3, 1450024, 20. MR 3189781, DOI 10.1142/S0129167X14500244
- Luis Barreira, Davor Dragičević, and Claudia Valls, From one-sided dichotomies to two-sided dichotomies, Discrete Contin. Dyn. Syst. 35 (2015), no. 7, 2817–2844. MR 3343543, DOI 10.3934/dcds.2015.35.2817
- Luis Barreira and Yakov B. Pesin, Lyapunov exponents and smooth ergodic theory, University Lecture Series, vol. 23, American Mathematical Society, Providence, RI, 2002. MR 1862379, DOI 10.1090/ulect/023
- Luis Barreira and Claudia Valls, Robustness of nonuniform exponential dichotomies in Banach spaces, J. Differential Equations 244 (2008), no. 10, 2407–2447. MR 2414396, DOI 10.1016/j.jde.2008.02.028
- L. Barreira, C. Silva, and C. Valls, Nonuniform behavior and robustness, J. Differential Equations 246 (2009), no. 9, 3579–3608. MR 2515169, DOI 10.1016/j.jde.2008.10.009
- Luis Barreira and Claudia Valls, Stability of nonautonomous differential equations, Lecture Notes in Mathematics, vol. 1926, Springer, Berlin, 2008. MR 2368551, DOI 10.1007/978-3-540-74775-8
- Luis Barreira and Claudia Valls, Robustness of discrete dynamics via Lyapunov sequences, Comm. Math. Phys. 290 (2009), no. 1, 219–238. MR 2520512, DOI 10.1007/s00220-009-0762-z
- A. Bento and C. Silva, Robustness of discrete nonuniform dichotomic behavior, preprint, https://arxiv.org/abs/1308.6820, 2013.
- Carmen Chicone and Yuri Latushkin, Evolution semigroups in dynamical systems and differential equations, Mathematical Surveys and Monographs, vol. 70, American Mathematical Society, Providence, RI, 1999. MR 1707332, DOI 10.1090/surv/070
- Shui-Nee Chow and Hugo Leiva, Existence and roughness of the exponential dichotomy for skew-product semiflow in Banach spaces, J. Differential Equations 120 (1995), no. 2, 429–477. MR 1347351, DOI 10.1006/jdeq.1995.1117
- Jifeng Chu, Robustness of nonuniform behavior for discrete dynamics, Bull. Sci. Math. 137 (2013), no. 8, 1031–1047. MR 3130345, DOI 10.1016/j.bulsci.2013.03.003
- W. A. Coppel, Stability and asymptotic behavior of differential equations, D. C. Heath and Company, Boston, Mass., 1965. MR 0190463
- Ju. L. Dalec′kiĭ and M. G. Kreĭn, Stability of solutions of differential equations in Banach space, Translations of Mathematical Monographs, Vol. 43, American Mathematical Society, Providence, R.I., 1974. Translated from the Russian by S. Smith. MR 0352639
- Klaus-Jochen Engel and Rainer Nagel, One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, vol. 194, Springer-Verlag, New York, 2000. With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt. MR 1721989
- Jack K. Hale, Asymptotic behavior of dissipative systems, Mathematical Surveys and Monographs, vol. 25, American Mathematical Society, Providence, RI, 1988. MR 941371, DOI 10.1090/surv/025
- Daniel Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. MR 610244
- Daniel B. Henry, Exponential dichotomies, the shadowing lemma and homoclinic orbits in Banach spaces, Resenhas 1 (1994), no. 4, 381–401. Dynamical phase transitions (São Paulo, 1994). MR 1357942
- Nguyen Thieu Huy, Exponential dichotomy of evolution equations and admissibility of function spaces on a half-line, J. Funct. Anal. 235 (2006), no. 1, 330–354. MR 2216449, DOI 10.1016/j.jfa.2005.11.002
- O. Leontiev and P. Feketa, A new criterion for the roughness of exponential dichotomy on $\Bbb R$, Miskolc Math. Notes 16 (2015), no. 2, 987–994. MR 3454157, DOI 10.18514/MMN.2015.1516
- José Luis Massera and Juan Jorge Schäffer, Linear differential equations and function spaces, Pure and Applied Mathematics, Vol. 21, Academic Press, New York-London, 1966. MR 0212324
- Raúl Naulin and Manuel Pinto, Admissible perturbations of exponential dichotomy roughness, Nonlinear Anal. 31 (1998), no. 5-6, 559–571. MR 1487846, DOI 10.1016/S0362-546X(97)00423-9
- Kenneth J. Palmer, A perturbation theorem for exponential dichotomies, Proc. Roy. Soc. Edinburgh Sect. A 106 (1987), no. 1-2, 25–37. MR 899938, DOI 10.1017/S0308210500018175
- Oskar Perron, Die Stabilitätsfrage bei Differentialgleichungen, Math. Z. 32 (1930), no. 1, 703–728 (German). MR 1545194, DOI 10.1007/BF01194662
- Victor A. Pliss and George R. Sell, Robustness of exponential dichotomies in infinite-dimensional dynamical systems, J. Dynam. Differential Equations 11 (1999), no. 3, 471–513. MR 1693858, DOI 10.1023/A:1021913903923
- Liviu Horia Popescu, Exponential dichotomy roughness on Banach spaces, J. Math. Anal. Appl. 314 (2006), no. 2, 436–454. MR 2185241, DOI 10.1016/j.jmaa.2005.04.011
- Liviu Horia Popescu, Exponential dichotomy roughness and structural stability for evolution families without bounded growth and decay, Nonlinear Anal. 71 (2009), no. 3-4, 935–947. MR 2527514, DOI 10.1016/j.na.2008.11.009
- Christian Pötzsche, Corrigendum on: A note on the dichotomy spectrum [MR2553938], J. Difference Equ. Appl. 18 (2012), no. 7, 1257–1261. MR 2946334, DOI 10.1080/10236198.2011.573790
- Adina Luminiţa Sasu, Exponential dichotomy and dichotomy radius for difference equations, J. Math. Anal. Appl. 344 (2008), no. 2, 906–920. MR 2426319, DOI 10.1016/j.jmaa.2008.03.019
- George R. Sell and Yuncheng You, Dynamics of evolutionary equations, Applied Mathematical Sciences, vol. 143, Springer-Verlag, New York, 2002. MR 1873467, DOI 10.1007/978-1-4757-5037-9
- Linfeng Zhou, Kening Lu, and Weinian Zhang, Roughness of tempered exponential dichotomies for infinite-dimensional random difference equations, J. Differential Equations 254 (2013), no. 9, 4024–4046. MR 3029143, DOI 10.1016/j.jde.2013.02.007
Bibliographic Information
- Davor Dragičević
- Affiliation: Department of Mathematics, University of Rijeka, 51000, Rijeka, Croatia
- Email: ddragicevic@math.uniri.hr
- Weinian Zhang
- Affiliation: School of Mathematics, Sichuan University, Chengdu, Sichuan 610064, People’s Republic of China
- MR Author ID: 259735
- Email: matzwn@126.com
- Received by editor(s): June 5, 2018
- Published electronically: March 7, 2019
- Additional Notes: The first author was supported by the Croatian Science Foundation under the project IP-2014-09-2285 and by the University of Rijeka under the project number 17.15.2.2.01.
The second author was supported in part by NSFC grants #11771307, #11726623, #11831012, and #11521061. He is the corresponding author. - Communicated by: Wenxian Shen
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 2437-2451
- MSC (2010): Primary 34D09; Secondary 37D25
- DOI: https://doi.org/10.1090/proc/14444
- MathSciNet review: 3951423