Isotropic positive definite functions on spheres generated from those in Euclidean spaces
HTML articles powered by AMS MathViewer
- by Zhihui Nie and Chunsheng Ma
- Proc. Amer. Math. Soc. 147 (2019), 3047-3056
- DOI: https://doi.org/10.1090/proc/14454
- Published electronically: April 3, 2019
- PDF | Request permission
Abstract:
For a continuous function $g(x)$ on $[0, \infty )$ with $g(x) =0, x \ge \pi$, if it satisfies the inequality \begin{equation*} \int _0^\pi u^{\alpha +\frac {1}{2}} g(u) J_{\alpha -\frac {1}{2}} (x u) du \ge 0, ~~~~~ x \ge 0, \end{equation*} then it is shown in this paper that \begin{equation*} \int _0^\pi g(u) P_n^{ (\alpha )} (\cos u ) \sin ^{2 \alpha } u du \ge 0, ~~~~~~ n \in \mathbb {N}, \end{equation*} where $\alpha$ is a nonnegative integer, and $J_\nu (x)$ and $P_n^{ (\nu )} (x)$ denote the Bessel function and the ultraspherical polynomial, respectively. As a consequence, for an isotropic and continuous positive definite function in the Euclidean space, if it is compactly supported, it can be adopted as an isotropic positive definite function on a sphere.References
- Milton Abramowitz and Irene A. Stegun (eds.), Handbook of mathematical functions, with formulas, graphs, and mathematical tables, Dover Publications, Inc., New York, 1966. MR 0208797
- R. Askey, Radial characteristic functions, Tech. Report No. 1262 (1973), Math. Research Center, University of Wisconsin-Madison.
- R. K. Beatson, Wolfgang zu Castell, and Yuan Xu, A Pólya criterion for (strict) positive-definiteness on the sphere, IMA J. Numer. Anal. 34 (2014), no. 2, 550–568. MR 3194799, DOI 10.1093/imanum/drt008
- S. Bochner and K. Chandrasekharan, Fourier Transforms, Annals of Mathematics Studies, No. 19, Princeton University Press, Princeton, N. J.; Oxford University Press, London, 1949. MR 0031582
- Debao Chen, Valdir A. Menegatto, and Xingping Sun, A necessary and sufficient condition for strictly positive definite functions on spheres, Proc. Amer. Math. Soc. 131 (2003), no. 9, 2733–2740. MR 1974330, DOI 10.1090/S0002-9939-03-06730-3
- Dan Cheng and Yimin Xiao, Excursion probability of Gaussian random fields on sphere, Bernoulli 22 (2016), no. 2, 1113–1130. MR 3449810, DOI 10.3150/14-BEJ688
- Feng Dai and Yuan Xu, Approximation theory and harmonic analysis on spheres and balls, Springer Monographs in Mathematics, Springer, New York, 2013. MR 3060033, DOI 10.1007/978-1-4614-6660-4
- Gregory E. Fasshauer, Meshfree approximation methods with MATLAB, Interdisciplinary Mathematical Sciences, vol. 6, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007. With 1 CD-ROM (Windows, Macintosh and UNIX). MR 2357267, DOI 10.1142/6437
- George Gasper, Positive sums of the classical orthogonal polynomials, SIAM J. Math. Anal. 8 (1977), no. 3, 423–447. MR 432946, DOI 10.1137/0508032
- Chunsheng Ma, Stochastic representations of isotropic vector random fields on spheres, Stoch. Anal. Appl. 34 (2016), no. 3, 389–403. MR 3488255, DOI 10.1080/07362994.2015.1136562
- Chunsheng Ma, Isotropic covariance matrix polynomials on spheres, Stoch. Anal. Appl. 34 (2016), no. 4, 679–706. MR 3507186, DOI 10.1080/07362994.2016.1170612
- Chunsheng Ma, Time varying isotropic vector random fields on spheres, J. Theoret. Probab. 30 (2017), no. 4, 1763–1785. MR 3736190, DOI 10.1007/s10959-016-0689-1
- F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge, 2010.
- Carl Edward Rasmussen and Christopher K. I. Williams, Gaussian processes for machine learning, Adaptive Computation and Machine Learning, MIT Press, Cambridge, MA, 2006. MR 2514435
- I. J. Schoenberg, Metric spaces and completely monotone functions, Ann. of Math. (2) 39 (1938), no. 4, 811–841. MR 1503439, DOI 10.2307/1968466
- I. J. Schoenberg, Positive definite functions on spheres, Duke Math. J. 9 (1942), 96–108. MR 5922
- Gábor Szegő, Orthogonal polynomials, 4th ed., American Mathematical Society Colloquium Publications, Vol. XXIII, American Mathematical Society, Providence, R.I., 1975. MR 0372517
- Yuan Xu, Positive definite functions on the unit sphere and integrals of Jacobi polynomials, Proc. Amer. Math. Soc. 146 (2018), no. 5, 2039–2048. MR 3767355, DOI 10.1090/proc/13913
Bibliographic Information
- Zhihui Nie
- Affiliation: Department of Mathematics, Statistics, and Physics, Wichita State University, Wichita, Kansas 67260-0033
- Email: niezhihui2014@gmail.com
- Chunsheng Ma
- Affiliation: Department of Mathematics, Statistics, and Physics, Wichita State University, Wichita, Kansas 67260-0033
- Email: chunsheng.ma@wichita.edu
- Received by editor(s): September 19, 2017
- Received by editor(s) in revised form: August 1, 2018, and October 15, 2018
- Published electronically: April 3, 2019
- Communicated by: Yuan Xu
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 3047-3056
- MSC (2010): Primary 33C45, 33C50, 42A82, 60E10
- DOI: https://doi.org/10.1090/proc/14454
- MathSciNet review: 3973905