A new presentation of the plane Cremona group
HTML articles powered by AMS MathViewer
- by Christian Urech and Susanna Zimmermann
- Proc. Amer. Math. Soc. 147 (2019), 2741-2755
- DOI: https://doi.org/10.1090/proc/14479
- Published electronically: March 26, 2019
- PDF | Request permission
Abstract:
We give a presentation of the plane Cremona group over an algebraically closed field with respect to the generators given by the theorem of Noether and Castelnuovo. This presentation is particularly simple and can be used for explicit calculations.References
- Maria Alberich-Carramiñana, Geometry of the plane Cremona maps, Lecture Notes in Mathematics, vol. 1769, Springer-Verlag, Berlin, 2002. MR 1874328, DOI 10.1007/b82933
- Jérémy Blanc, Simple relations in the Cremona group, Proc. Amer. Math. Soc. 140 (2012), no. 5, 1495–1500. MR 2869134, DOI 10.1090/S0002-9939-2011-11004-9
- Jérémy Blanc and Jean-Philippe Furter, Topologies and structures of the Cremona groups, Ann. of Math. (2) 178 (2013), no. 3, 1173–1198. MR 3092478, DOI 10.4007/annals.2013.178.3.8
- Serge Cantat and Stéphane Lamy, Normal subgroups in the Cremona group, Acta Math. 210 (2013), no. 1, 31–94. With an appendix by Yves de Cornulier. MR 3037611, DOI 10.1007/s11511-013-0090-1
- G. Castelnuovo, Le trasformazioni generatrici del gruppo cremoniano nel piano, Atti della R. Accad. delle Scienze di Torino 36 (1901), 861–874.
- E. Fischer, Die Isomorphie der Invariantenkörper der endlichen abelschen Gruppen linearer Transformationen, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1915, pp. 77–80.
- M. Kh. Gizatullin, Defining relations for the Cremona group of the plane, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 5, 909–970, 1134 (Russian). MR 675525
- Marat Gizatullin, On some tensor representations of the Cremona group of the projective plane, New trends in algebraic geometry (Warwick, 1996) London Math. Soc. Lecture Note Ser., vol. 264, Cambridge Univ. Press, Cambridge, 1999, pp. 111–150. MR 1714823, DOI 10.1017/CBO9780511721540.007
- V. A. Iskovskikh, Proof of a theorem on relations in the two-dimensional Cremona group, Uspekhi Mat. Nauk 40 (1985), no. 5(245), 255–256 (Russian). MR 810819
- V. A. Iskovskikh, F. K. Kabdykairov, and S. L. Tregub, Relations in a two-dimensional Cremona group over a perfect field, Izv. Ross. Akad. Nauk Ser. Mat. 57 (1993), no. 3, 3–69 (Russian); English transl., Russian Acad. Sci. Izv. Math. 42 (1994), no. 3, 427–478. MR 1243341, DOI 10.1070/IM1994v042n03ABEH001542
- S. Lamy, Groupes de transformations birationnelles de surfaces, Mémoire d’habilitation à diriger des recherches, l’université Claude Bernarde Lyon 1, 2010.
- Christian Urech, On homomorphisms between Cremona groups, Ann. Inst. Fourier (Grenoble) 68 (2018), no. 1, 53–100 (English, with English and French summaries). MR 3795470
- David Wright, Two-dimensional Cremona groups acting on simplicial complexes, Trans. Amer. Math. Soc. 331 (1992), no. 1, 281–300. MR 1038019, DOI 10.1090/S0002-9947-1992-1038019-2
- Susanna Zimmermann, The Cremona group of the plane is compactly presented, J. Lond. Math. Soc. (2) 93 (2016), no. 1, 25–46. MR 3455780, DOI 10.1112/jlms/jdv054
Bibliographic Information
- Christian Urech
- Affiliation: Department of Mathematics, Huxley Building, Imperial College London, 180 Queen’s Gate, London SW7 2AZ, United Kingdom
- MR Author ID: 1270858
- Email: christian.urech@gmail.com
- Susanna Zimmermann
- Affiliation: Laboratoire Angevin de Recherche en Mathématiques (LAREMA), CNRS, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers Cedex, France
- MR Author ID: 1147793
- Email: zimmermann@math.univ-angers.fr
- Received by editor(s): February 21, 2018
- Received by editor(s) in revised form: July 30, 2018
- Published electronically: March 26, 2019
- Additional Notes: During this work, both authors were partially supported by the Swiss National Science Foundation.
- Communicated by: Rachel Pries
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 2741-2755
- MSC (2010): Primary 14E07, 20F05
- DOI: https://doi.org/10.1090/proc/14479
- MathSciNet review: 3973878