Differential symmetric signature in high dimension
HTML articles powered by AMS MathViewer
- by Holger Brenner and Alessio Caminata
- Proc. Amer. Math. Soc. 147 (2019), 4147-4159
- DOI: https://doi.org/10.1090/proc/14458
- Published electronically: June 27, 2019
- PDF | Request permission
Abstract:
We study the differential symmetric signature, an invariant of rings of finite type over a field, introduced in a previous work by the authors in an attempt to find a characteristic-free analogue of the F-signature. We compute the differential symmetric signature for invariant rings $k[x_1,\dots ,x_n]^G$, where $G$ is a finite small subgroup of GL$(n,k)$, and for hypersurface rings $k[x_1,\dots ,x_n]/(f)$ of dimension $\geq 3$ with an isolated singularity. In the first case, we obtain the value $1/|G|$, which coincides with the F-signature and generalizes a previous result of the authors for the two-dimensional case. In the second case, following an argument by Bruns, we obtain the value $0$, providing an example of a ring where differential symmetric signature and F-signature are different.References
- Ian M. Aberbach and Graham J. Leuschke, The $F$-signature and strong $F$-regularity, Math. Res. Lett. 10 (2003), no. 1, 51–56. MR 1960123, DOI 10.4310/MRL.2003.v10.n1.a6
- M. Atiyah, On the Krull-Schmidt theorem with application to sheaves, Bull. Soc. Math. France 84 (1956), 307–317. MR 86358, DOI 10.24033/bsmf.1475
- Holger Brenner and Alessio Caminata, The symmetric signature, Comm. Algebra 45 (2017), no. 9, 3730–3756. MR 3627626, DOI 10.1080/00927872.2016.1245313
- Holger Brenner, Jack Jeffries, and Luis Núñez-Betancourt, Quantifying singularities with differential operators, preprint, arXiv:1810.04476, 2018.
- Igor Burban and Yuriy Drozd, Maximal Cohen-Macaulay modules over surface singularities, Trends in representation theory of algebras and related topics, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2008, pp. 101–166. MR 2484725, DOI 10.4171/062-1/3
- Alessio Caminata and Alessandro De Stefani, F-signature function of quotient singularities, J. Algebra 523 (2019), 311–341. MR 3901707, DOI 10.1016/j.jalgebra.2018.11.040
- Alessio Caminata and Lukas Katthän, The symmetric signature of cyclic quotient singularities, J. Commut. Algebra, to appear, https://projecteuclid.org/euclid.jca/ 1491379222.
- H. Dichi and D. Sangaré, Hilbert functions, Hilbert-Samuel quasi-polynomials with respect to $f$-good filtrations, multiplicities, J. Pure Appl. Algebra 138 (1999), no. 3, 205–213. MR 1691476, DOI 10.1016/S0022-4049(98)00080-2
- Daniel Grayson and Michael Stillman, Macaulay 2. A software system for research in algebraic geometry, available at http://www.math.uiuc.edu/Macaulay2/.
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967), 361 (French). MR 238860
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157, DOI 10.1007/978-1-4757-3849-0
- Craig Huneke and Graham J. Leuschke, Two theorems about maximal Cohen-Macaulay modules, Math. Ann. 324 (2002), no. 2, 391–404. MR 1933863, DOI 10.1007/s00208-002-0343-3
- Osamu Iyama and Ryo Takahashi, Tilting and cluster tilting for quotient singularities, Math. Ann. 356 (2013), no. 3, 1065–1105. MR 3063907, DOI 10.1007/s00208-012-0842-9
- Ernst Kunz, Characterizations of regular local rings of characteristic $p$, Amer. J. Math. 91 (1969), 772–784. MR 252389, DOI 10.2307/2373351
- Graham J. Leuschke and Roger Wiegand, Cohen-Macaulay representations, Mathematical Surveys and Monographs, vol. 181, American Mathematical Society, Providence, RI, 2012. MR 2919145, DOI 10.1090/surv/181
- Alex Martsinkovsky, Almost split sequences and Zariski differentials, Trans. Amer. Math. Soc. 319 (1990), no. 1, 285–307. MR 955490, DOI 10.1090/S0002-9947-1990-0955490-0
- Erich Platte, Differentielle Eigenschaften der Invarianten regulärer Algebren, J. Algebra 62 (1980), no. 1, 1–12. MR 561113, DOI 10.1016/0021-8693(80)90201-X
- Gerhard Seibert, The Hilbert-Kunz function of rings of finite Cohen-Macaulay type, Arch. Math. (Basel) 69 (1997), no. 4, 286–296. MR 1466822, DOI 10.1007/s000130050123
- Anurag K. Singh, The $F$-signature of an affine semigroup ring, J. Pure Appl. Algebra 196 (2005), no. 2-3, 313–321. MR 2110527, DOI 10.1016/j.jpaa.2004.08.001
- Karen E. Smith and Michel Van den Bergh, Simplicity of rings of differential operators in prime characteristic, Proc. London Math. Soc. (3) 75 (1997), no. 1, 32–62. MR 1444312, DOI 10.1112/S0024611597000257
- Kevin Tucker, $F$-signature exists, Invent. Math. 190 (2012), no. 3, 743–765. MR 2995185, DOI 10.1007/s00222-012-0389-0
- Kei-ichi Watanabe and Ken-ichi Yoshida, Hilbert-Kunz multiplicity and an inequality between multiplicity and colength, J. Algebra 230 (2000), no. 1, 295–317. MR 1774769, DOI 10.1006/jabr.1999.7956
- Kei-ichi Watanabe and Ken-ichi Yoshida, Minimal relative Hilbert-Kunz multiplicity, Illinois J. Math. 48 (2004), no. 1, 273–294. MR 2048225
- Yongwei Yao, Observations on the $F$-signature of local rings of characteristic $p$, J. Algebra 299 (2006), no. 1, 198–218. MR 2225772, DOI 10.1016/j.jalgebra.2005.08.013
- Yuji Yoshino, Cohen-Macaulay modules over Cohen-Macaulay rings, London Mathematical Society Lecture Note Series, vol. 146, Cambridge University Press, Cambridge, 1990. MR 1079937, DOI 10.1017/CBO9780511600685
Bibliographic Information
- Holger Brenner
- Affiliation: Institut für Mathematik, Universität Osnabrück, Albrechtstrasse 28a, 49076 Osnabrück, Germany
- MR Author ID: 322383
- Email: holger.brenner@uni-osnabrueck.de
- Alessio Caminata
- Affiliation: Institut de Matemàtica, Universitat de Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain
- MR Author ID: 1111986
- Email: alessio.caminata@unine.ch
- Received by editor(s): November 28, 2017
- Received by editor(s) in revised form: October 3, 2018
- Published electronically: June 27, 2019
- Additional Notes: The second author was supported by European Union’s Horizon 2020 research and innovation programme under grant agreement No. 701807.
- Communicated by: Jerzy Weyman
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 4147-4159
- MSC (2010): Primary 13A50, 13D40, 13N05
- DOI: https://doi.org/10.1090/proc/14458
- MathSciNet review: 4002532