## Uniform bounds for solutions to elliptic problems on simply connected planar domains

HTML articles powered by AMS MathViewer

- by Luca Battaglia PDF
- Proc. Amer. Math. Soc.
**147**(2019), 4289-4299 Request permission

## Abstract:

We consider the following elliptic problems on simply connected planar domains: \begin{equation*} \left \{\begin {array}{ll}-\Delta u=\lambda |x|^{2\alpha }K(x)e^u&\text {in }\Omega \\u=0&\text {on }\partial \Omega \end{array}\right . ;\quad \quad \left \{\begin {array}{ll}-\Delta u=|x|^{2\alpha }K(x)u^p&\text {in }\Omega \\u>0&\text {in }\Omega \\u=0&\text {on }\partial \Omega \end{array}\right . \end{equation*} with $\alpha >-1,\lambda >0,p>1,0<K(x)\in C^1\left (\overline \Omega \right )$.

We show that any solution to each problem must satisfy a uniform bound on the mass, which is given, respectively, by $\lambda \int _\Omega |x|^{2\alpha }K(x)e^u\mathrm dx$ and $p\int _\Omega |x|^{2\alpha }K(x)u^{p+1}\mathrm dx$. The same results apply to some systems and more general nonlinearities.

The proofs are based on the Riemann mapping theorem and a Pohožaev-type identity.

## References

- Sami Baraket and Frank Pacard,
*Construction of singular limits for a semilinear elliptic equation in dimension $2$*, Calc. Var. Partial Differential Equations**6**(1998), no. 1, 1–38. MR**1488492**, DOI 10.1007/s005260050080 - Daniele Bartolucci,
*Existence and non existence results for supercritical systems of Liouville-type equations on simply connected domains*, Calc. Var. Partial Differential Equations**53**(2015), no. 1-2, 317–348. MR**3336322**, DOI 10.1007/s00526-014-0750-9 - Daniele Bartolucci, Francesca De Marchis, and Andrea Malchiodi,
*Supercritical conformal metrics on surfaces with conical singularities*, Int. Math. Res. Not. IMRN**24**(2011), 5625–5643. MR**2863376**, DOI 10.1093/imrn/rnq285 - Daniele Bartolucci and Andrea Malchiodi,
*An improved geometric inequality via vanishing moments, with applications to singular Liouville equations*, Comm. Math. Phys.**322**(2013), no. 2, 415–452. MR**3077921**, DOI 10.1007/s00220-013-1731-0 - Luca Battaglia,
*Existence and multiplicity result for the singular Toda system*, J. Math. Anal. Appl.**424**(2015), no. 1, 49–85. MR**3286550**, DOI 10.1016/j.jmaa.2014.10.081 - L. Battaglia,
*Variational aspects of singular Liouville systems*, PhD thesis, 2015. - Luca Battaglia,
*$B_2$ and $G_2$ Toda systems on compact surfaces: a variational approach*, J. Math. Phys.**58**(2017), no. 1, 011506, 25. MR**3602583**, DOI 10.1063/1.4974774 - Luca Battaglia, Aleks Jevnikar, Andrea Malchiodi, and David Ruiz,
*A general existence result for the Toda system on compact surfaces*, Adv. Math.**285**(2015), 937–979. MR**3406518**, DOI 10.1016/j.aim.2015.07.036 - Luca Battaglia and Andrea Malchiodi,
*Existence and non-existence results for the $SU(3)$ singular Toda system on compact surfaces*, J. Funct. Anal.**270**(2016), no. 10, 3750–3807. MR**3478872**, DOI 10.1016/j.jfa.2015.12.011 - Alessandro Carlotto,
*On the solvability of singular Liouville equations on compact surfaces of arbitrary genus*, Trans. Amer. Math. Soc.**366**(2014), no. 3, 1237–1256. MR**3145730**, DOI 10.1090/S0002-9947-2013-05847-3 - Alessandro Carlotto and Andrea Malchiodi,
*Weighted barycentric sets and singular Liouville equations on compact surfaces*, J. Funct. Anal.**262**(2012), no. 2, 409–450. MR**2854708**, DOI 10.1016/j.jfa.2011.09.012 - Chiun-Chuan Chen and Chang-Shou Lin,
*Topological degree for a mean field equation on Riemann surfaces*, Comm. Pure Appl. Math.**56**(2003), no. 12, 1667–1727. MR**2001443**, DOI 10.1002/cpa.10107 - Chiun-Chuan Chen and Chang-Shou Lin,
*Mean field equation of Liouville type with singular data: topological degree*, Comm. Pure Appl. Math.**68**(2015), no. 6, 887–947. MR**3340376**, DOI 10.1002/cpa.21532 - D. G. de Figueiredo, P.-L. Lions, and R. D. Nussbaum,
*A priori estimates and existence of positive solutions of semilinear elliptic equations*, J. Math. Pures Appl. (9)**61**(1982), no. 1, 41–63. MR**664341** - F. De Marchis, M. Grossi, I. Ianni, and F. Pacella,
*$L^\infty$-norm and energy quantization for the planar Lane-Emden problem with large exponent*, Arch. Math. (Basel)**111**(2018), no. 4, 421–429. MR**3853141**, DOI 10.1007/s00013-018-1191-z - Francesca De Marchis, Isabella Ianni, and Filomena Pacella,
*Asymptotic profile of positive solutions of Lane-Emden problems in dimension two*, J. Fixed Point Theory Appl.**19**(2017), no. 1, 889–916. MR**3625097**, DOI 10.1007/s11784-016-0386-9 - Francesca De Marchis and Rafael López-Soriano,
*Existence and non existence results for the singular Nirenberg problem*, Calc. Var. Partial Differential Equations**55**(2016), no. 2, Art. 36, 35. MR**3478290**, DOI 10.1007/s00526-016-0974-y - Francesca De Marchis, Rafael López-Soriano, and David Ruiz,
*Compactness, existence and multiplicity for the singular mean field problem with sign-changing potentials*, J. Math. Pures Appl. (9)**115**(2018), 237–267 (English, with English and French summaries). MR**3808346**, DOI 10.1016/j.matpur.2017.11.007 - Manuel del Pino, Michal Kowalczyk, and Monica Musso,
*Singular limits in Liouville-type equations*, Calc. Var. Partial Differential Equations**24**(2005), no. 1, 47–81. MR**2157850**, DOI 10.1007/s00526-004-0314-5 - Shengbing Deng, Danilo Garrido, and Monica Musso,
*Multiple blow-up solutions for an exponential nonlinearity with potential in $\Bbb {R}^2$*, Nonlinear Anal.**119**(2015), 419–442. MR**3334197**, DOI 10.1016/j.na.2014.10.034 - Shengbing Deng and Monica Musso,
*Bubbling solutions for an exponential nonlinearity in $\Bbb {R}^2$*, J. Differential Equations**257**(2014), no. 7, 2259–2302. MR**3228966**, DOI 10.1016/j.jde.2014.05.034 - Shengbing Deng and Monica Musso,
*Blow up solutions for a Liouville equation with Hénon term*, Nonlinear Anal.**129**(2015), 320–342. MR**3414933**, DOI 10.1016/j.na.2015.09.018 - Zindine Djadli,
*Existence result for the mean field problem on Riemann surfaces of all genuses*, Commun. Contemp. Math.**10**(2008), no. 2, 205–220. MR**2409366**, DOI 10.1142/S0219199708002776 - Zindine Djadli and Andrea Malchiodi,
*Existence of conformal metrics with constant $Q$-curvature*, Ann. of Math. (2)**168**(2008), no. 3, 813–858. MR**2456884**, DOI 10.4007/annals.2008.168.813 - Pierpaolo Esposito, Massimo Grossi, and Angela Pistoia,
*On the existence of blowing-up solutions for a mean field equation*, Ann. Inst. H. Poincaré C Anal. Non Linéaire**22**(2005), no. 2, 227–257 (English, with English and French summaries). MR**2124164**, DOI 10.1016/j.anihpc.2004.12.001 - Pierpaolo Esposito, Monica Musso, and Angela Pistoia,
*Concentrating solutions for a planar elliptic problem involving nonlinearities with large exponent*, J. Differential Equations**227**(2006), no. 1, 29–68. MR**2233953**, DOI 10.1016/j.jde.2006.01.023 - Pierpaolo Esposito, Angela Pistoia, and Juncheng Wei,
*Concentrating solutions for the Hénon equation in $\Bbb R^2$*, J. Anal. Math.**100**(2006), 249–280. MR**2309528**, DOI 10.1007/BF02916763 - B. Gidas, Wei Ming Ni, and L. Nirenberg,
*Symmetry and related properties via the maximum principle*, Comm. Math. Phys.**68**(1979), no. 3, 209–243. MR**544879** - Massimo Grossi and Angela Pistoia,
*Multiple blow-up phenomena for the sinh-Poisson equation*, Arch. Ration. Mech. Anal.**209**(2013), no. 1, 287–320. MR**3054605**, DOI 10.1007/s00205-013-0625-9 - Massimo Grossi and Futoshi Takahashi,
*Nonexistence of multi-bubble solutions to some elliptic equations on convex domains*, J. Funct. Anal.**259**(2010), no. 4, 904–917. MR**2652176**, DOI 10.1016/j.jfa.2010.03.008 - Nikola Kamburov and Boyan Sirakov,
*Uniform a priori estimates for positive solutions of the Lane-Emden equation in the plane*, Calc. Var. Partial Differential Equations**57**(2018), no. 6, Paper No. 164, 8. MR**3860913**, DOI 10.1007/s00526-018-1435-6 - Rafael López-Soriano and David Ruiz,
*Prescribing the Gaussian curvature in a subdomain of $\Bbb {S}^2$ with Neumann boundary condition*, J. Geom. Anal.**26**(2016), no. 1, 630–644. MR**3441531**, DOI 10.1007/s12220-015-9566-x - Monica Musso, Angela Pistoia, and Juncheng Wei,
*New blow-up phenomena for $SU(n+1)$ Toda system*, J. Differential Equations**260**(2016), no. 7, 6232–6266. MR**3456832**, DOI 10.1016/j.jde.2015.12.036 - Angela Pistoia and Tonia Ricciardi,
*Sign-changing tower of bubbles for a sinh-Poisson equation with asymmetric exponents*, Discrete Contin. Dyn. Syst.**37**(2017), no. 11, 5651–5692. MR**3681954**, DOI 10.3934/dcds.2017245 - Xiaofeng Ren and Juncheng Wei,
*On a two-dimensional elliptic problem with large exponent in nonlinearity*, Trans. Amer. Math. Soc.**343**(1994), no. 2, 749–763. MR**1232190**, DOI 10.1090/S0002-9947-1994-1232190-7 - Xiaofeng Ren and Juncheng Wei,
*Single-point condensation and least-energy solutions*, Proc. Amer. Math. Soc.**124**(1996), no. 1, 111–120. MR**1301045**, DOI 10.1090/S0002-9939-96-03156-5

## Additional Information

**Luca Battaglia**- Affiliation: Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Largo S. Leonardo Murialdo 1, 00146 Roma, Italy
- MR Author ID: 1059262
- Email: lbattaglia@mat.uniroma3.it
- Received by editor(s): September 15, 2018
- Received by editor(s) in revised form: November 21, 2018
- Published electronically: July 9, 2019
- Communicated by: Joachim Krieger
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**147**(2019), 4289-4299 - MSC (2010): Primary 35J61, 35J47, 35B45
- DOI: https://doi.org/10.1090/proc/14482
- MathSciNet review: 4002542