The semi-global isometric embedding of surfaces with curvature changing signs stably
HTML articles powered by AMS MathViewer
- by Wentao Cao
- Proc. Amer. Math. Soc. 147 (2019), 4343-4353
- DOI: https://doi.org/10.1090/proc/14597
- Published electronically: May 17, 2019
- PDF | Request permission
Abstract:
A semi-global isometric embedding of abstract surfaces with Gaussian curvature changing signs of any finite order is obtained through solving the Darboux equation.References
- E. Cartan, Sur la possibilité de plonger un espace Riemannian donné dans un espace Euclidien, Ann. Soc. Pol. Math. 6 (1927), 1–7.
- Gui-Qiang Chen, Marshall Slemrod, and Dehua Wang, Isometric immersions and compensated compactness, Comm. Math. Phys. 294 (2010), no. 2, 411–437. MR 2579461, DOI 10.1007/s00220-009-0955-5
- Cleopatra Christoforou, BV weak solutions to Gauss-Codazzi system for isometric immersions, J. Differential Equations 252 (2012), no. 3, 2845–2863. MR 2860643, DOI 10.1016/j.jde.2011.08.046
- Guang Chang Dong, The semi-global isometric imbedding in $\textbf {R}^3$ of two-dimensional Riemannian manifolds with Gaussian curvature changing sign cleanly, J. Partial Differential Equations 6 (1993), no. 1, 62–79. MR 1210252
- K. O. Friedrichs, Symmetric positive linear differential equations, Comm. Pure Appl. Math. 11 (1958), 333–418. MR 100718, DOI 10.1002/cpa.3160110306
- Chao-hao Gu, Differentiable solutions of symmetric positive partial differential equations, Chinese Math.—Acta 5 (1964), 541–555. MR 0174851
- Pengfei Guan and Yan Yan Li, The Weyl problem with nonnegative Gauss curvature, J. Differential Geom. 39 (1994), no. 2, 331–342. MR 1267893
- Qing Han, On the isometric embedding of surfaces with Gauss curvature changing sign cleanly, Comm. Pure Appl. Math. 58 (2005), no. 2, 285–295. MR 2094852, DOI 10.1002/cpa.20054
- Qing Han, Local isometric embedding of surfaces with Gauss curvature changing sign stably across a curve, Calc. Var. Partial Differential Equations 25 (2006), no. 1, 79–103. MR 2183856, DOI 10.1007/s00526-005-0332-y
- Qing Han and Jia-Xing Hong, Isometric embedding of Riemannian manifolds in Euclidean spaces, Mathematical Surveys and Monographs, vol. 130, American Mathematical Society, Providence, RI, 2006. MR 2261749, DOI 10.1090/surv/130
- Qing Han, Jia-Xing Hong, and Chang-Shou Lin, Local isometric embedding of surfaces with nonpositive Gaussian curvature, J. Differential Geom. 63 (2003), no. 3, 475–520. MR 2015470
- Jia Xing Hong, Surface in $\textbf {R}^3$ with prescribed Gauss curvature, Chinese Ann. Math. Ser. B 8 (1987), no. 3, 332–342. A Chinese summary appears in Chinese Ann. Math. Ser. A 8 (1987), no. 3, 534. MR 926115
- Jia Xing Hong, Realization in $\textbf {R}^3$ of complete Riemannian manifolds with negative curvature, Comm. Anal. Geom. 1 (1993), no. 3-4, 487–514. MR 1266477, DOI 10.4310/CAG.1993.v1.n4.a1
- J. Hong and C. Zuily, Isometric embedding of the $2$-sphere with nonnegative curvature in $\textbf {R}^3$, Math. Z. 219 (1995), no. 3, 323–334. MR 1339708, DOI 10.1007/BF02572368
- M. Janet, Sur la possibilité de plonger un espace Riemannian donné dans un espace Euclidien, Ann. Soc. Pol. Math. 5 (1926), 38–43.
- ChunHe Li, The semi-global isometric embedding of surfaces with Gaussian curvature changing sign cleanly, Sci. China Math. 55 (2012), no. 12, 2507–2515. MR 3001066, DOI 10.1007/s11425-012-4435-6
- Chang Shou Lin, The local isometric embedding in $\textbf {R}^3$ of $2$-dimensional Riemannian manifolds with nonnegative curvature, J. Differential Geom. 21 (1985), no. 2, 213–230. MR 816670
- Chang Shou Lin, The local isometric embedding in $\textbf {R}^3$ of two-dimensional Riemannian manifolds with Gaussian curvature changing sign cleanly, Comm. Pure Appl. Math. 39 (1986), no. 6, 867–887. MR 859276, DOI 10.1002/cpa.3160390607
- John Nash, $C^1$ isometric imbeddings, Ann. of Math. (2) 60 (1954), 383–396. MR 65993, DOI 10.2307/1969840
- John Nash, The imbedding problem for Riemannian manifolds, Ann. of Math. (2) 63 (1956), 20–63. MR 75639, DOI 10.2307/1969989
- Louis Nirenberg, The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure Appl. Math. 6 (1953), 337–394. MR 58265, DOI 10.1002/cpa.3160060303
- H. Weyl, Uber die Bestimmheit einer geschlossenen konvex Flache durch ihr Linienelement, Vierteljahresschrift der nat.-Forsch. Ges. Zurich 61 (1916), 40–72.
- Shing Tung Yau (ed.), Seminar on Differential Geometry, Annals of Mathematics Studies, No. 102, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1982. Papers presented at seminars held during the academic year 1979–1980. MR 645728
Bibliographic Information
- Wentao Cao
- Affiliation: Institute für mathematik, Universität Leipzig, D-04109, Leipzig, Germany
- MR Author ID: 1111202
- Email: wentao.cao@math.uni-leipzig.de
- Received by editor(s): April 6, 2018
- Received by editor(s) in revised form: January 11, 2019
- Published electronically: May 17, 2019
- Additional Notes: The research was supported by the ERC Grant Agreement No. 724298.
- Communicated by: Jiaping Wang
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 4343-4353
- MSC (2010): Primary 35M12, 53A05, 53C21
- DOI: https://doi.org/10.1090/proc/14597
- MathSciNet review: 4002546