Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society, the Proceedings of the American Mathematical Society (PROC) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

The semi-global isometric embedding of surfaces with curvature changing signs stably
HTML articles powered by AMS MathViewer

by Wentao Cao PDF
Proc. Amer. Math. Soc. 147 (2019), 4343-4353 Request permission

Abstract:

A semi-global isometric embedding of abstract surfaces with Gaussian curvature changing signs of any finite order is obtained through solving the Darboux equation.
References
  • E. Cartan, Sur la possibilité de plonger un espace Riemannian donné dans un espace Euclidien, Ann. Soc. Pol. Math. 6 (1927), 1–7.
  • Gui-Qiang Chen, Marshall Slemrod, and Dehua Wang, Isometric immersions and compensated compactness, Comm. Math. Phys. 294 (2010), no. 2, 411–437. MR 2579461, DOI 10.1007/s00220-009-0955-5
  • Cleopatra Christoforou, BV weak solutions to Gauss-Codazzi system for isometric immersions, J. Differential Equations 252 (2012), no. 3, 2845–2863. MR 2860643, DOI 10.1016/j.jde.2011.08.046
  • Guang Chang Dong, The semi-global isometric imbedding in $\textbf {R}^3$ of two-dimensional Riemannian manifolds with Gaussian curvature changing sign cleanly, J. Partial Differential Equations 6 (1993), no. 1, 62–79. MR 1210252
  • K. O. Friedrichs, Symmetric positive linear differential equations, Comm. Pure Appl. Math. 11 (1958), 333–418. MR 100718, DOI 10.1002/cpa.3160110306
  • Chao-hao Gu, Differentiable solutions of symmetric positive partial differential equations, Chinese Math.–Acta 5 (1964), 541–555. MR 0174851
  • Pengfei Guan and Yan Yan Li, The Weyl problem with nonnegative Gauss curvature, J. Differential Geom. 39 (1994), no. 2, 331–342. MR 1267893
  • Qing Han, On the isometric embedding of surfaces with Gauss curvature changing sign cleanly, Comm. Pure Appl. Math. 58 (2005), no. 2, 285–295. MR 2094852, DOI 10.1002/cpa.20054
  • Qing Han, Local isometric embedding of surfaces with Gauss curvature changing sign stably across a curve, Calc. Var. Partial Differential Equations 25 (2006), no. 1, 79–103. MR 2183856, DOI 10.1007/s00526-005-0332-y
  • Qing Han and Jia-Xing Hong, Isometric embedding of Riemannian manifolds in Euclidean spaces, Mathematical Surveys and Monographs, vol. 130, American Mathematical Society, Providence, RI, 2006. MR 2261749, DOI 10.1090/surv/130
  • Qing Han, Jia-Xing Hong, and Chang-Shou Lin, Local isometric embedding of surfaces with nonpositive Gaussian curvature, J. Differential Geom. 63 (2003), no. 3, 475–520. MR 2015470
  • Jia Xing Hong, Surface in $\textbf {R}^3$ with prescribed Gauss curvature, Chinese Ann. Math. Ser. B 8 (1987), no. 3, 332–342. A Chinese summary appears in Chinese Ann. Math. Ser. A 8 (1987), no. 3, 534. MR 926115
  • Jia Xing Hong, Realization in $\textbf {R}^3$ of complete Riemannian manifolds with negative curvature, Comm. Anal. Geom. 1 (1993), no. 3-4, 487–514. MR 1266477, DOI 10.4310/CAG.1993.v1.n4.a1
  • J. Hong and C. Zuily, Isometric embedding of the $2$-sphere with nonnegative curvature in $\textbf {R}^3$, Math. Z. 219 (1995), no. 3, 323–334. MR 1339708, DOI 10.1007/BF02572368
  • M. Janet, Sur la possibilité de plonger un espace Riemannian donné dans un espace Euclidien, Ann. Soc. Pol. Math. 5 (1926), 38–43.
  • ChunHe Li, The semi-global isometric embedding of surfaces with Gaussian curvature changing sign cleanly, Sci. China Math. 55 (2012), no. 12, 2507–2515. MR 3001066, DOI 10.1007/s11425-012-4435-6
  • Chang Shou Lin, The local isometric embedding in $\textbf {R}^3$ of $2$-dimensional Riemannian manifolds with nonnegative curvature, J. Differential Geom. 21 (1985), no. 2, 213–230. MR 816670
  • Chang Shou Lin, The local isometric embedding in $\textbf {R}^3$ of two-dimensional Riemannian manifolds with Gaussian curvature changing sign cleanly, Comm. Pure Appl. Math. 39 (1986), no. 6, 867–887. MR 859276, DOI 10.1002/cpa.3160390607
  • John Nash, $C^1$ isometric imbeddings, Ann. of Math. (2) 60 (1954), 383–396. MR 65993, DOI 10.2307/1969840
  • John Nash, The imbedding problem for Riemannian manifolds, Ann. of Math. (2) 63 (1956), 20–63. MR 75639, DOI 10.2307/1969989
  • Louis Nirenberg, The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure Appl. Math. 6 (1953), 337–394. MR 58265, DOI 10.1002/cpa.3160060303
  • H. Weyl, Uber die Bestimmheit einer geschlossenen konvex Flache durch ihr Linienelement, Vierteljahresschrift der nat.-Forsch. Ges. Zurich 61 (1916), 40–72.
  • Shing Tung Yau (ed.), Seminar on Differential Geometry, Annals of Mathematics Studies, No. 102, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1982. Papers presented at seminars held during the academic year 1979–1980. MR 645728
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35M12, 53A05, 53C21
  • Retrieve articles in all journals with MSC (2010): 35M12, 53A05, 53C21
Additional Information
  • Wentao Cao
  • Affiliation: Institute für mathematik, Universität Leipzig, D-04109, Leipzig, Germany
  • MR Author ID: 1111202
  • Email: wentao.cao@math.uni-leipzig.de
  • Received by editor(s): April 6, 2018
  • Received by editor(s) in revised form: January 11, 2019
  • Published electronically: May 17, 2019
  • Additional Notes: The research was supported by the ERC Grant Agreement No. 724298.
  • Communicated by: Jiaping Wang
  • © Copyright 2019 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 147 (2019), 4343-4353
  • MSC (2010): Primary 35M12, 53A05, 53C21
  • DOI: https://doi.org/10.1090/proc/14597
  • MathSciNet review: 4002546