Convergence of Teichmüller deformations in the universal Teichmüller space
HTML articles powered by AMS MathViewer
- by Hideki Miyachi and Dragomir Šarić
- Proc. Amer. Math. Soc. 147 (2019), 4877-4889
- DOI: https://doi.org/10.1090/proc/14598
- Published electronically: May 17, 2019
- PDF | Request permission
Abstract:
Let $\varphi :\mathbb {D}\to \mathbb {C}$ be an integrable holomorphic function on the unit disk $\mathbb {D}$ and let $D_{\varphi }:\mathbb {D}\to T(\mathbb {D})$ be the corresponding Teichmüller disk in the universal Teichmüller space $T(\mathbb {D})$. For a positive $t$ it is known that $D_{\varphi }(t)\to [\mu _{\varphi }]\in PML_b(\mathbb {D})$ as $t\to 1$, where $\mu _{\varphi }$ is a bounded measured lamination representing a point on the Thurston boundary of $T(\mathbb {D})$. We extend this result by showing that $D_{\varphi }\colon \mathbb {D}\to T(\mathbb {D})$ extends as a continuous map from the closed disk $\overline {\mathbb {D}}$ to the Thurston bordification. In addition, we prove that the rate of convergence of $D_{\varphi }(\lambda )$ when $\lambda \to e^{i\theta }$ is independent of the type of the approach to $e^{i\theta }\in \partial \mathbb {D}$.References
- Lars V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR 0357743
- Vincent Alberge, Convergence of some horocyclic deformations to the Gardiner-Masur boundary, Ann. Acad. Sci. Fenn. Math. 41 (2016), no. 1, 439–455. MR 3467720, DOI 10.5186/aasfm.2016.4132
- Francis Bonahon, The geometry of Teichmüller space via geodesic currents, Invent. Math. 92 (1988), no. 1, 139–162. MR 931208, DOI 10.1007/BF01393996
- Francis Bonahon and Dragomir Šarić, A Thurston boundary for infinite-dimensional Teichmüller spaces, Preprint. arXiv:1805.05997.
- Jon Chaika, Howard Masur, and Michael Wolf, Limits in $\mathcal {PMF}$ of Teichmüller geodesics, J. Reine Angew. Math. 747 (2019), 1–44. MR 3905128, DOI 10.1515/crelle-2016-0017
- Frederick P. Gardiner and Nikola Lakic, Quasiconformal Teichmüller theory, Mathematical Surveys and Monographs, vol. 76, American Mathematical Society, Providence, RI, 2000. MR 1730906, DOI 10.1090/surv/076
- Hrant Hakobyan and Dragomir Šarić, Limits of Teichmüller geodesics in the universal Teichmüller space, Proc. Lond. Math. Soc. (3) 116 (2018), no. 6, 1599–1628. MR 3816390, DOI 10.1112/plms.12125
- Hrant Hakobyan and Dragomir Šarić, Vertical limits of graph domains, Proc. Amer. Math. Soc. 144 (2016), no. 3, 1223–1234. MR 3447674, DOI 10.1090/proc12780
- Dragomir Šarić, Earthquakes and Thurston’s boundary for the Teichmüller space of the universal hyperbolic solenoid, Pacific J. Math. 233 (2007), no. 1, 205–228. MR 2366374, DOI 10.2140/pjm.2007.233.205
- ManMan Jiang and WeiXu Su, Convergence of earthquake and horocycle paths to the boundary of Teichmüller space, Sci. China Math. 59 (2016), no. 10, 1937–1948. MR 3549934, DOI 10.1007/s11425-016-5138-1
- Stephen Keith, Modulus and the Poincaré inequality on metric measure spaces, Math. Z. 245 (2003), no. 2, 255–292. MR 2013501, DOI 10.1007/s00209-003-0542-y
- Olli Lehto, Univalent functions and Teichmüller spaces, Graduate Texts in Mathematics, vol. 109, Springer-Verlag, New York, 1987. MR 867407, DOI 10.1007/978-1-4613-8652-0
- O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, 2nd ed., Die Grundlehren der mathematischen Wissenschaften, Band 126, Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K. W. Lucas. MR 0344463, DOI 10.1007/978-3-642-65513-5
- Christopher Leininger, Anna Lenzhen, and Kasra Rafi, Limit sets of Teichmüller geodesics with minimal non-uniquely ergodic vertical foliation, J. Reine Angew. Math. 737 (2018), 1–32. MR 3781329, DOI 10.1515/crelle-2015-0040
- Anna Lenzhen, Teichmüller geodesics that do not have a limit in ${\scr {PMF}}$, Geom. Topol. 12 (2008), no. 1, 177–197. MR 2377248, DOI 10.2140/gt.2008.12.177
- Howard Masur, Two boundaries of Teichmüller space, Duke Math. J. 49 (1982), no. 1, 183–190. MR 650376
- Walter Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR 924157
- Dragomir Šarić, Geodesic currents and Teichmüller space, Topology 44 (2005), no. 1, 99–130. MR 2104004, DOI 10.1016/j.top.2004.05.001
- Kurt Strebel, Quadratic differentials, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 5, Springer-Verlag, Berlin, 1984. MR 743423, DOI 10.1007/978-3-662-02414-0
Bibliographic Information
- Hideki Miyachi
- Affiliation: Division of Mathematical and Physical Sciences, Graduate School of Natural Science & Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
- MR Author ID: 650573
- ORCID: 0000-0003-4318-9539
- Email: miyachi@se.kanazawa-u.ac.jp
- Dragomir Šarić
- Affiliation: Department of Mathematics, Queens College of CUNY, 65-30 Kissena Boulevard, Flushing, New York 11367; and Mathematics Ph.D. Program, The CUNY Graduate Center, 365 Fifth Avenue, New York, New York 10016-4309
- Email: Dragomir.Saric@qc.cuny.edu
- Received by editor(s): October 3, 2018
- Received by editor(s) in revised form: February 19, 2019
- Published electronically: May 17, 2019
- Additional Notes: The first author was partially supported by JSPS KAKENHI Grant Numbers 16K05202, 16H03933, 17H02843.
The second author was partially supported by a Simons Foundation grant, Grant Number 346391. - Communicated by: Ken Bromberg
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 4877-4889
- MSC (2010): Primary 30F60; Secondary 30C62, 30L99
- DOI: https://doi.org/10.1090/proc/14598
- MathSciNet review: 4011520