On the structure of ideals and multipliers: A unified approach
HTML articles powered by AMS MathViewer
- by Mostafa Mbekhta and Matthias Neufang
- Proc. Amer. Math. Soc. 147 (2019), 4757-4769
- DOI: https://doi.org/10.1090/proc/14676
- Published electronically: August 7, 2019
- PDF | Request permission
Abstract:
We study the structure of one-sided ideals in a Banach algebra $\mathcal {A}$. We find very general conditions under which any left (right) ideal is of the form $\mathcal {A} q$ ($q \mathcal {A}$) for some idempotent right (left) multiplier on $\mathcal {A}$. We further show that a large class of one-sided multipliers can be realized as a product of an invertible and an idempotent multiplier. Applying our results to algebras over locally compact quantum groups and $C^*$-algebras, we demonstrate that our approach generalizes and unifies various theorems from abstract harmonic analysis and operator algebra theory. In particular, we generalize results of Bekka (and Reiter), Berglund, Forrest, and Lau–Losert. We also deduce the Choquet–Deny theorem for compact groups as an application of our approach. Moreover, we answer, for a certain class of measures on a compact group, a question of Ülger which, in the abelian case, goes back to Beurling (1938).References
- Melahat Almus, David P. Blecher, and Charles John Read, Ideals and hereditary subalgebras in operator algebras, Studia Math. 212 (2012), no. 1, 65–93. MR 3004167, DOI 10.4064/sm212-1-5
- Melahat Almus, David P. Blecher, and Sonia Sharma, Ideals and structure of operator algebras, J. Operator Theory 67 (2012), no. 2, 397–436. MR 2928323
- Ahmadreza Azimifard, Ebrahim Samei, and Nico Spronk, Amenability properties of the centres of group algebras, J. Funct. Anal. 256 (2009), no. 5, 1544–1564. MR 2490229, DOI 10.1016/j.jfa.2008.11.026
- Mohammed E. B. Bekka, Complemented subspaces of $L^\infty (G)$, ideals of $L^1(G)$ and amenability, Monatsh. Math. 109 (1990), no. 3, 195–203. MR 1058407, DOI 10.1007/BF01297760
- John J. Benedetto, Spectral synthesis, Pure and Applied Mathematics, No. 66, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0622040, DOI 10.1007/978-3-322-96661-2
- M. C. F. Berglund, Ideal $C^{\ast }$-algebras, Duke Math. J. 40 (1973), 241–257. MR 322519
- A. Beurling, Sur les intégrales de Fourier absolument convergentes et leurs applications à une transformation fonctionnelle, 9th Congress Math. Scand., pp. 345–366, Helsingfors (1938)
- David P. Blecher and Narutaka Ozawa, Real positivity and approximate identities in Banach algebras, Pacific J. Math. 277 (2015), no. 1, 1–59. MR 3393680, DOI 10.2140/pjm.2015.277.1
- David P. Blecher and Charles John Read, Operator algebras with contractive approximate identities, J. Funct. Anal. 261 (2011), no. 1, 188–217. MR 2785898, DOI 10.1016/j.jfa.2011.02.019
- David P. Blecher and Charles John Read, Operator algebras with contractive approximate identities, II, J. Funct. Anal. 264 (2013), no. 4, 1049–1067. MR 3004957, DOI 10.1016/j.jfa.2012.11.013
- David P. Blecher and Charles John Read, Operator algebras with contractive approximate identities: weak compactness and the spectrum, J. Funct. Anal. 267 (2014), no. 6, 1837–1850. MR 3237775, DOI 10.1016/j.jfa.2014.06.007
- David P. Blecher and Charles John Read, Operator algebras with contractive approximate identities: a large operator algebra in $c_0$, Trans. Amer. Math. Soc. 368 (2016), no. 5, 3243–3270. MR 3451876, DOI 10.1090/tran/6590
- Brian Forrest, Amenability and bounded approximate identities in ideals of $A(G)$, Illinois J. Math. 34 (1990), no. 1, 1–25. MR 1031879
- Brian Forrest, Amenability and ideals in $A(G)$, J. Austral. Math. Soc. Ser. A 53 (1992), no. 2, 143–155. MR 1175708, DOI 10.1017/S1446788700035758
- B. Forrest, E. Kaniuth, A. T. Lau, and N. Spronk, Ideals with bounded approximate identities in Fourier algebras, J. Funct. Anal. 203 (2003), no. 1, 286–304. MR 1996874, DOI 10.1016/S0022-1236(02)00121-0
- Brian E. Forrest and Volker Runde, Norm one idempotent $cb$-multipliers with applications to the Fourier algebra in the $cb$-multiplier norm, Canad. Math. Bull. 54 (2011), no. 4, 654–662. MR 2894515, DOI 10.4153/CMB-2011-098-0
- Robin Harte and Mostafa Mbekhta, On generalized inverses in $C^*$-algebras, Studia Math. 103 (1992), no. 1, 71–77. MR 1184103, DOI 10.4064/sm-103-1-71-77
- B. Host, Le théorème des idempotents dans $B(G)$, Bull. Soc. Math. France 114 (1986), no. 2, 215–223 (French, with English summary). MR 860817, DOI 10.24033/bsmf.2055
- Zhiguo Hu, Matthias Neufang, and Zhong-Jin Ruan, Multipliers on a new class of Banach algebras, locally compact quantum groups, and topological centres, Proc. Lond. Math. Soc. (3) 100 (2010), no. 2, 429–458. MR 2595745, DOI 10.1112/plms/pdp026
- Zhiguo Hu, Matthias Neufang, and Zhong-Jin Ruan, Module maps on duals of Banach algebras and topological centre problems, J. Funct. Anal. 260 (2011), no. 4, 1188–1218. MR 2747020, DOI 10.1016/j.jfa.2010.10.017
- Zhiguo Hu, Matthias Neufang, and Zhong-Jin Ruan, Module maps over locally compact quantum groups, Studia Math. 211 (2012), no. 2, 111–145. MR 2997583, DOI 10.4064/sm211-2-2
- Wojciech Jaworski and Matthias Neufang, The Choquet-Deny equation in a Banach space, Canad. J. Math. 59 (2007), no. 4, 795–827. MR 2338234, DOI 10.4153/CJM-2007-034-4
- E. Kaniuth, A. T. Lau, and A. Ülger, Multipliers of commutative Banach algebras, power boundedness and Fourier-Stieltjes algebras, J. Lond. Math. Soc. (2) 81 (2010), no. 1, 255–275. MR 2580464, DOI 10.1112/jlms/jdp068
- E. Kaniuth, A. T. Lau, and A. Ülger, Power boundedness in Fourier and Fourier-Stieltjes algebras and other commutative Banach algebras, J. Funct. Anal. 260 (2011), no. 8, 2366–2386. MR 2772374, DOI 10.1016/j.jfa.2010.11.012
- E. Kaniuth, A. T. Lau, and A. Ülger, Power boundedness in Banach algebras associated with locally compact groups, Studia Math. 222 (2014), no. 2, 165–189. MR 3223323, DOI 10.4064/sm222-2-4
- Ronald Larsen, An introduction to the theory of multipliers, Die Grundlehren der mathematischen Wissenschaften, Band 175, Springer-Verlag, New York-Heidelberg, 1971. MR 0435738, DOI 10.1007/978-3-642-65030-7
- Anthony To Ming Lau, The second conjugate algebra of the Fourier algebra of a locally compact group, Trans. Amer. Math. Soc. 267 (1981), no. 1, 53–63. MR 621972, DOI 10.1090/S0002-9947-1981-0621972-9
- Anthony To Ming Lau and Viktor Losert, Weak$^\ast$-closed complemented invariant subspaces of $L_\infty (G)$ and amenable locally compact groups, Pacific J. Math. 123 (1986), no. 1, 149–159. MR 834144, DOI 10.2140/pjm.1986.123.149
- K. B. Laursen and M. Mbekhta, Closed range multipliers and generalized inverses, Studia Math. 107 (1993), no. 2, 127–135. MR 1244571
- Sheila A. McKilligan, On the representation of the multiplier algebras of some Banach algebras, J. London Math. Soc. (2) 6 (1973), 399–402. MR 318881, DOI 10.1112/jlms/s2-6.3.399
- Richard D. Mosak, Central functions in group algebras, Proc. Amer. Math. Soc. 29 (1971), 613–616. MR 279602, DOI 10.1090/S0002-9939-1971-0279602-3
- Richard D. Mosak, The $L^{1}$- and $C^{\ast }$-algebras of $[FIA]^{-}_{B}$ groups, and their representations, Trans. Amer. Math. Soc. 163 (1972), 277–310. MR 293016, DOI 10.1090/S0002-9947-1972-0293016-7
- D. Poulin, The strong topological centre and the dual factorization property, Ph.D. thesis, Carleton University (2011).
- Hans Reiter, $L^{1}$-algebras and Segal algebras, Lecture Notes in Mathematics, Vol. 231, Springer-Verlag, Berlin-New York, 1971. MR 0440280, DOI 10.1007/BFb0060759
- Volker Runde, Characterizations of compact and discrete quantum groups through second duals, J. Operator Theory 60 (2008), no. 2, 415–428. MR 2464219
- A. Ülger, When is the range of a multiplier on a Banach algebra closed?, Math. Z. 254 (2006), no. 4, 715–728. MR 2253465, DOI 10.1007/s00209-006-0003-5
- Seiji Watanabe, A Banach algebra which is an ideal in the second dual space, Sci. Rep. Niigata Univ. Ser. A 11 (1974), 95–101. MR 383079
- G. A. Willis, Probability measures on groups and some related ideals in group algebras, J. Funct. Anal. 92 (1990), no. 1, 202–263. MR 1064694, DOI 10.1016/0022-1236(90)90075-V
Bibliographic Information
- Mostafa Mbekhta
- Affiliation: Laboratoire de Mathématiques Paul Painlevé (UMR CNRS 8524), Université de Lille, Département de Mathématiques, 59655 Villeneuve d’Ascq Cedex, France
- MR Author ID: 121980
- Email: mostafa.mbekhta@univ-lille.fr
- Matthias Neufang
- Affiliation: School of Mathematics and Statistics, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada; and Laboratoire de Mathématiques Paul Painlevé (UMR CNRS 8524), Université de Lille, Département de Mathématiques, 59655 Villeneuve d’Ascq Cedex, France
- MR Author ID: 718390
- Email: mneufang@math.carleton.ca; matthias.neufang@univ-lille.fr
- Received by editor(s): January 2, 2019
- Published electronically: August 7, 2019
- Additional Notes: This work was supported in part by the Labex CEMPI (ANR-11-LABX-0007-01). The second author was partially supported by NSERC Discovery Grant RGPIN-2014-06356. This support is gratefully acknowledged.
- Communicated by: Stephen Dilworth
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 4757-4769
- MSC (2010): Primary 43A10, 43A20, 46H10
- DOI: https://doi.org/10.1090/proc/14676
- MathSciNet review: 4011510