On time-dependent Besov vector fields and the regularity of their flows
HTML articles powered by AMS MathViewer
- by David Nicolas Nenning
- Proc. Amer. Math. Soc. 148 (2020), 623-638
- DOI: https://doi.org/10.1090/proc/14821
- Published electronically: October 28, 2019
- PDF | Request permission
Abstract:
We show ODE-closedness for a large class of Besov spaces $\mathcal {B}^{n,\alpha ,p}(\mathbb {R}^d,\mathbb {R}^d)$, where $n \ge 1,~\alpha \in (0,1],~p \in [1,\infty ]$. ODE-closedness means that pointwise time-dependent $\mathcal {B}^{n,\alpha ,p}$-vector fields $u$ have unique flows $\Phi _u \in \operatorname {Id}+\mathcal {B}^{n,\alpha ,p}(\mathbb {R}^d,\mathbb {R}^d)$. The class of vector fields under consideration contains as a special case the class of Bochner integrable vector fields $L^1(I, \mathcal {B}^{n,\alpha ,p}(\mathbb {R}^d,\mathbb {R}^d))$. In addition, for $n \ge 2$ and $\alpha < \beta$, we show continuity of the flow mapping $L^1(I,\mathcal {B}^{n,\beta ,p}(\mathbb {R}^d,\mathbb {R}^d)) \rightarrow C(I,\mathcal {B}^{n,\alpha ,p}(\mathbb {R}^d,\mathbb {R}^d)), ~ u \to \Phi _u-\operatorname {Id}$. We even get $\gamma$-Hölder continuity for any $\gamma < \beta - \alpha$.References
- G. Bourdaud and Massimo Lanza de Cristoforis, Functional calculus in Hölder-Zygmund spaces, Trans. Amer. Math. Soc. 354 (2002), no. 10, 4109–4129. MR 1926867, DOI 10.1090/S0002-9947-02-03000-3
- Martins Bruveris and François-Xavier Vialard, On completeness of groups of diffeomorphisms, J. Eur. Math. Soc. (JEMS) 19 (2017), no. 5, 1507–1544. MR 3635359, DOI 10.4171/JEMS/698
- H. Glöckner, Measurable regularity properties of infinite-dimensional Lie groups, (2016), arXiv:1601.02568.
- G. H. Hardy, Weierstrass’s non-differentiable function, Trans. Amer. Math. Soc. 17 (1916), no. 3, 301–325. MR 1501044, DOI 10.1090/S0002-9947-1916-1501044-1
- Giovanni Leoni, A first course in Sobolev spaces, Graduate Studies in Mathematics, vol. 105, American Mathematical Society, Providence, RI, 2009. MR 2527916, DOI 10.1090/gsm/105
- David Nicolas Nenning and Armin Rainer, On groups of Hölder diffeomorphisms and their regularity, Trans. Amer. Math. Soc. 370 (2018), no. 8, 5761–5794. MR 3803147, DOI 10.1090/tran/7269
- David Nicolas Nenning and Armin Rainer, The Trouvé group for spaces of test functions, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM (2018), arXiv:1711.01196.
- Jaak Peetre, New thoughts on Besov spaces, Duke University Mathematics Series, No. 1, Duke University, Mathematics Department, Durham, N.C., 1976. MR 0461123
- Laurent Younes, Shapes and diffeomorphisms, Applied Mathematical Sciences, vol. 171, Springer-Verlag, Berlin, 2010. MR 2656312, DOI 10.1007/978-3-642-12055-8
- A. Zygmund, Smooth functions, Duke Math. J. 12 (1945), 47–76. MR 12691, DOI 10.1215/S0012-7094-45-01206-3
Bibliographic Information
- David Nicolas Nenning
- Affiliation: Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, A-1090 Wien, Austria
- MR Author ID: 1270132
- Email: david.nicolas.nenning@univie.ac.at
- Received by editor(s): April 20, 2018
- Received by editor(s) in revised form: March 26, 2019
- Published electronically: October 28, 2019
- Additional Notes: The author was supported by FWF-Project P 26735-N25
- Communicated by: Wenxian Shen
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 623-638
- MSC (2010): Primary 37C10, 46E15, 46T20
- DOI: https://doi.org/10.1090/proc/14821
- MathSciNet review: 4052200