A note on steady vortex flows in two dimensions
HTML articles powered by AMS MathViewer
- by Daomin Cao and Guodong Wang
- Proc. Amer. Math. Soc. 148 (2020), 1153-1159
- DOI: https://doi.org/10.1090/proc/14776
- Published electronically: September 20, 2019
- PDF | Request permission
Abstract:
In this note, we give a general criterion for steady vortex flows in a planar bounded domain. More specifically, we show that if the stream function satisfies “locally” a semilinear elliptic equation with monotone or Lipschitz nonlinearity, then the flow must be steady.References
- V. I. Arnol′d, Mathematical methods of classical mechanics, Graduate Texts in Mathematics, vol. 60, Springer-Verlag, New York-Heidelberg, 1978. Translated from the Russian by K. Vogtmann and A. Weinstein. MR 0690288, DOI 10.1007/978-1-4757-1693-1
- Vladimir I. Arnold and Boris A. Khesin, Topological methods in hydrodynamics, Applied Mathematical Sciences, vol. 125, Springer-Verlag, New York, 1998. MR 1612569, DOI 10.1007/b97593
- G. R. Burton, Variational problems on classes of rearrangements and multiple configurations for steady vortices, Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989), no. 4, 295–319 (English, with French summary). MR 998605, DOI 10.1016/s0294-1449(16)30320-1
- G. R. Burton, Rearrangements of functions, saddle points and uncountable families of steady configurations for a vortex, Acta Math. 163 (1989), no. 3-4, 291–309. MR 1032076, DOI 10.1007/BF02392738
- G. R. Burton, Global nonlinear stability for steady ideal fluid flow in bounded planar domains, Arch. Ration. Mech. Anal. 176 (2005), no. 2, 149–163. MR 2186035, DOI 10.1007/s00205-004-0339-0
- Daomin Cao, Zhongyuan Liu, and Juncheng Wei, Regularization of point vortices pairs for the Euler equation in dimension two, Arch. Ration. Mech. Anal. 212 (2014), no. 1, 179–217. MR 3162476, DOI 10.1007/s00205-013-0692-y
- Daomin Cao, Shuangjie Peng, and Shusen Yan, Planar vortex patch problem in incompressible steady flow, Adv. Math. 270 (2015), 263–301. MR 3286537, DOI 10.1016/j.aim.2014.09.027
- Daomin Cao, Shuangjie Peng, and Shusen Yan, Regularization of planar vortices for the incompressible flow, Acta Math. Sci. Ser. B (Engl. Ed.) 38 (2018), no. 5, 1443–1467. MR 3830743, DOI 10.1016/S0252-9602(18)30827-0
- Daomin Cao and Guodong Wang, Steady vortex patches with opposite rotation directions in a planar ideal fluid, Calc. Var. Partial Differential Equations 58 (2019), no. 2, Paper No. 75, 17. MR 3927130, DOI 10.1007/s00526-019-1503-6
- Daomin Cao and Guodong Wang, Steady vortex patch solutions to the vortex-wave system, Nonlinearity 32 (2019), no. 5, 1882–1904. MR 3942603, DOI 10.1088/1361-6544/aafe14
- D. Cao and G. Wang, Steady vortex patches near a nontrivial irrotational flow, Sci China Math, 63(2020), https://doi.org/10.1007/s11425-018-9495-1.
- Alan R. Elcrat and Kenneth G. Miller, Rearrangements in steady multiple vortex flows, Comm. Partial Differential Equations 20 (1995), no. 9-10, 1481–1490. MR 1349221, DOI 10.1080/03605309508821141
- Lawrence C. Evans and Ronald F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. MR 1158660
- Gongbao Li, Shusen Yan, and Jianfu Yang, An elliptic problem related to planar vortex pairs, SIAM J. Math. Anal. 36 (2005), no. 5, 1444–1460. MR 2139558, DOI 10.1137/S003614100343055X
- Didier Smets and Jean Van Schaftingen, Desingularization of vortices for the Euler equation, Arch. Ration. Mech. Anal. 198 (2010), no. 3, 869–925. MR 2729322, DOI 10.1007/s00205-010-0293-y
- Bruce Turkington, On steady vortex flow in two dimensions. I, II, Comm. Partial Differential Equations 8 (1983), no. 9, 999–1030, 1031–1071. MR 702729, DOI 10.1080/03605308308820293
Bibliographic Information
- Daomin Cao
- Affiliation: School of Mathematics and Information Science, Guangzhou University, Guangzhou 510405, People’s Republic of China; and Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- MR Author ID: 261647
- Email: dmcao@amt.ac.cn
- Guodong Wang
- Affiliation: Institute for Advanced Study in Mathematics, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
- MR Author ID: 1305036
- Email: wangguodong14@mails.ucas.ac.cn
- Received by editor(s): June 9, 2019
- Received by editor(s) in revised form: July 9, 2019
- Published electronically: September 20, 2019
- Additional Notes: The first author was supported by NNSF of China Grant (No. 11831009) and Chinese Academy of Sciences by Grant QYZDJ-SSW-SYS021
The second author was supported by NNSF of China Grant (No.11771469)
The second author is the corresponding author. - Communicated by: Wenxian Shen
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 1153-1159
- MSC (2010): Primary 33C55, 33C50, 42B15, 42C10
- DOI: https://doi.org/10.1090/proc/14776
- MathSciNet review: 4055942