## Asymptotically Poincaré surfaces in quasi-Fuchsian manifolds

HTML articles powered by AMS MathViewer

- by Keaton Quinn
- Proc. Amer. Math. Soc.
**148**(2020), 1239-1253 - DOI: https://doi.org/10.1090/proc/14850
- Published electronically: November 19, 2019

## Abstract:

We introduce the notion of an asymptotically Poincaré family of surfaces in an end of a quasi-Fuchsian manifold. We show that any such family gives a foliation of an end by asymptotically parallel convex surfaces, and that the asymptotic behavior of the first and second fundamental forms determines the projective structure at infinity. As an application, we establish a conjecture of Labourie from [J. London Math. Soc. 45 (1992), pp. 549–565] regarding constant Gaussian curvature surfaces. We also derive consequences for constant mean curvature surfaces.## References

- Charles Gregory Anderson,
*Projective structures on Riemann surfaces and developing maps to H(3) and CP(n)*, ProQuest LLC, Ann Arbor, MI, 1998. Thesis (Ph.D.)–University of California, Berkeley. MR**2698860** - Thierry Aubin,
*Nonlinear analysis on manifolds. Monge-Ampère equations*, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 252, Springer-Verlag, New York, 1982. MR**681859**, DOI 10.1007/978-1-4612-5734-9 - David Dumas,
*Complex projective structures*, Handbook of Teichmüller theory. Vol. II, IRMA Lect. Math. Theor. Phys., vol. 13, Eur. Math. Soc., Zürich, 2009, pp. 455–508. MR**2497780**, DOI 10.4171/055-1/13 - David Dumas,
*Holonomy limits of complex projective structures*, Adv. Math.**315**(2017), 427–473. MR**3667590**, DOI 10.1016/j.aim.2017.05.021 - Charles L. Epstein,
*Envelopes of horospheres and weingarten surfaces in hyperbolic 3-space*, Preprint, 1984. - Arthur E. Fischer and Jerrold E. Marsden,
*Deformations of the scalar curvature*, Duke Math. J.**42**(1975), no. 3, 519–547. MR**380907** - David Gilbarg and Neil S. Trudinger,
*Elliptic partial differential equations of second order*, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR**1814364**, DOI 10.1007/978-3-642-61798-0 - François Labourie,
*Problème de Minkowski et surfaces à courbure constante dans les variétés hyperboliques*, Bull. Soc. Math. France**119**(1991), no. 3, 307–325 (French, with English summary). MR**1125669**, DOI 10.24033/bsmf.2169 - François Labourie,
*Surfaces convexes dans l’espace hyperbolique et $\textbf {C}\textrm {P}^1$-structures*, J. London Math. Soc. (2)**45**(1992), no. 3, 549–565 (French). MR**1180262**, DOI 10.1112/jlms/s2-45.3.549 - Olli Lehto,
*Univalent functions and Teichmüller spaces*, Graduate Texts in Mathematics, vol. 109, Springer-Verlag, New York, 1987. MR**867407**, DOI 10.1007/978-1-4613-8652-0 - Rafe Mazzeo and Frank Pacard,
*Constant curvature foliations in asymptotically hyperbolic spaces*, Rev. Mat. Iberoam.**27**(2011), no. 1, 303–333. MR**2815739**, DOI 10.4171/RMI/637 - Zeev Nehari,
*The Schwarzian derivative and schlicht functions*, Bull. Amer. Math. Soc.**55**(1949), 545–551. MR**29999**, DOI 10.1090/S0002-9904-1949-09241-8 - Brad Osgood and Dennis Stowe,
*The Schwarzian derivative and conformal mapping of Riemannian manifolds*, Duke Math. J.**67**(1992), no. 1, 57–99. MR**1174603**, DOI 10.1215/S0012-7094-92-06704-4 - Jean-Marc Schlenker,
*Notes on the Schwarzian tensor and measured foliations at infinity of quasifuchsian manifolds*, Preprint arXiv:1708.01852 (2017). - Anthony J. Tromba,
*Teichmüller theory in Riemannian geometry*, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1992. Lecture notes prepared by Jochen Denzler. MR**1164870**, DOI 10.1007/978-3-0348-8613-0

## Bibliographic Information

**Keaton Quinn**- Affiliation: Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, Illinois 60607
- Email: kquinn23@uic.edu
- Received by editor(s): December 18, 2018
- Received by editor(s) in revised form: July 31, 2019
- Published electronically: November 19, 2019
- Additional Notes: The author was partially supported in summer 2018 by a research assistantship under NSF DMS-1246844, RTG: Algebraic and Arithmetic Geometry, at the University of Illinois at Chicago.
- Communicated by: Ken Bromberg
- © Copyright 2019 Keaton Quinn
- Journal: Proc. Amer. Math. Soc.
**148**(2020), 1239-1253 - MSC (2010): Primary 30F60; Secondary 53C42
- DOI: https://doi.org/10.1090/proc/14850
- MathSciNet review: 4055951