Random Gromov’s monsters do not act non-elementarily on hyperbolic spaces
HTML articles powered by AMS MathViewer
- by Dominik Gruber, Alessandro Sisto and Romain Tessera
- Proc. Amer. Math. Soc. 148 (2020), 2773-2782
- DOI: https://doi.org/10.1090/proc/14754
- Published electronically: March 18, 2020
Abstract:
We show that Gromov’s monster groups arising from i.i.d. labelings of expander graphs do not admit non-elementary actions on geodesic hyperbolic spaces. The proof relies on comparing properties of random walks on randomly labeled graphs and on groups acting non-elementarily on hyperbolic spaces.References
- G. Arzhantseva and T. Delzant, Examples of random groups, preprint. 2008, available from the authors’ websites.
- Noga Alon and Joel H. Spencer, The probabilistic method, 2nd ed., Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley-Interscience [John Wiley & Sons], New York, 2000. With an appendix on the life and work of Paul Erdős. MR 1885388, DOI 10.1002/0471722154
- Sahana H. Balasubramanya, Acylindrical group actions on quasi-trees, Algebr. Geom. Topol. 17 (2017), no. 4, 2145–2176. MR 3685605, DOI 10.2140/agt.2017.17.2145
- Uri Bader, Alex Furman, Tsachik Gelander, and Nicolas Monod, Property (T) and rigidity for actions on Banach spaces, Acta Math. 198 (2007), no. 1, 57–105. MR 2316269, DOI 10.1007/s11511-007-0013-0
- M. Bourdon, Cohomologie et actions isométriques propres sur les espaces $L^p$, Geometry, Topology, and Dynamics in Negative Curvature (Bangalore 2010) (2016), 84-106. With an appendix on the life and work of Paul Erdős.
- V. Gerasimov, Floyd maps for relatively hyperbolic groups, Geom. Funct. Anal. 22 (2012), no. 5, 11361–1399. MR 2794627, DOI 10.1007/s00039-012-0175-6
- Misha Gromov, Spaces and questions, Geom. Funct. Anal. Special Volume (2000), 118–161. GAFA 2000 (Tel Aviv, 1999). MR 1826251
- M. Gromov, Random walk in random groups, Geom. Funct. Anal. 13 (2003), no. 1, 73–146. MR 1978492, DOI 10.1007/s000390300002
- Dominik Gruber, Groups with graphical $C(6)$ and $C(7)$ small cancellation presentations, Trans. Amer. Math. Soc. 367 (2015), no. 3, 2051–2078. MR 3286508, DOI 10.1090/S0002-9947-2014-06198-9
- Dominik Gruber and Alessandro Sisto, Infinitely presented graphical small cancellation groups are acylindrically hyperbolic, Ann. Inst. Fourier (Grenoble) 68 (2018), no. 6, 2501–2552 (English, with English and French summaries). MR 3897973, DOI 10.5802/aif.3215
- T. Haettel, Hyperbolic rigidity of higher rank lattices, arXiv:1607.02004, 2016, Ann. Sci. Éc. Norm. Supér., to appear.
- N. Higson, V. Lafforgue, and G. Skandalis, Counterexamples to the Baum-Connes conjecture, Geom. Funct. Anal. 12 (2002), no. 2, 330–354. MR 1911663, DOI 10.1007/s00039-002-8249-5
- P. Mathieu and A. Sisto, Deviation inequalities for random walks, arXiv:1411.7865, 2014, Duke Math. J., to appear.
- J. Maher and A. Sisto, Random subgroups of acylindrically hyperbolic groups and hyperbolic embeddings, Int. Math. Res. Not. 2019 (2019), 3941–3980., DOI 10.1093/imrn/rnx233
- Joseph Maher and Giulio Tiozzo, Random walks on weakly hyperbolic groups, J. Reine Angew. Math. 742 (2018), 187–239. MR 3849626, DOI 10.1515/crelle-2015-0076
- A. Minasyan and D. Osin, Acylindrically hyperbolic groups with exotic properties, J. Algebra 522 (2019), 218-235., DOI 10.1016/j.jalgebra.2018.12.011
- Assaf Naor and Lior Silberman, Poincaré inequalities, embeddings, and wild groups, Compos. Math. 147 (2011), no. 5, 1546–1572. MR 2834732, DOI 10.1112/S0010437X11005343
- Yann Ollivier, On a small cancellation theorem of Gromov, Bull. Belg. Math. Soc. Simon Stevin 13 (2006), no. 1, 75–89. MR 2245980
- D. Osajda, Small cancellation labellings of some infinite graphs and applications, arXiv:1406.5015, 2014.
- M Puls, The first $L^p$-cohomology of some groups with one end, Arch. Math. 88 (2007), no. 6, 500–506., DOI 10.1007/s00013-007-2111-9
- L. Silberman, Addendum to: “Random walk in random groups” [Geom. Funct. Anal. 13 (2003), no. 1, 73–146; MR1978492] by M. Gromov, Geom. Funct. Anal. 13 (2003), no. 1, 147–177. MR 1978493, DOI 10.1007/s000390300003
- Guoliang Yu, Hyperbolic groups admit proper affine isometric actions on $l^p$-spaces, Geom. Funct. Anal. 15 (2005), no. 5, 1144–1151. MR 2221161, DOI 10.1007/s00039-005-0533-8
Bibliographic Information
- Dominik Gruber
- Affiliation: Department of Mathematics, ETH Zurich, 8092 Zurich, Switzerland
- MR Author ID: 1089843
- Email: dominik.gruber@math.ethz.ch
- Alessandro Sisto
- Affiliation: Department of Mathematics, ETH Zurich, 8092 Zurich, Switzerland
- MR Author ID: 881750
- Email: sisto@math.ethz.ch
- Romain Tessera
- Affiliation: Laboratoire de Mathématiques d’Orsay, Université Paris-Sud, CNRS, Université Paris-Saclay, F-91405 Orsay, France
- MR Author ID: 800491
- Email: tessera@phare.normalesup.org
- Received by editor(s): June 6, 2017
- Received by editor(s) in revised form: March 13, 2019, and May 17, 2019
- Published electronically: March 18, 2020
- Communicated by: Kenneth Bromberg
- © Copyright 2020 Dominik Gruber, Alessandro Sisto, and Romain Tessera
- Journal: Proc. Amer. Math. Soc. 148 (2020), 2773-2782
- MSC (2010): Primary 20F65
- DOI: https://doi.org/10.1090/proc/14754
- MathSciNet review: 4099767