On the Helicity conservation for the incompressible Euler equations
HTML articles powered by AMS MathViewer
- by Luigi De Rosa
- Proc. Amer. Math. Soc. 148 (2020), 2969-2979
- DOI: https://doi.org/10.1090/proc/14952
- Published electronically: February 26, 2020
- PDF | Request permission
Abstract:
In this work we investigate the helicity regularity for weak solutions of the incompressible Euler equations. To prove regularity and conservation of the helicity we will treat the velocity $u$ and its $\operatorname {curl} u$ as two independent functions and we mainly show that the helicity is a constant of motion assuming $u \in L^{2r}_t(C^\theta _x)$ and $\operatorname {curl} u \in L^{\kappa }_t(W^{\alpha ,1}_x)$, where $r,\kappa$ are conjugate Hölder exponents and $2\theta +\alpha \geq 1$. Using the same techniques we also show that the helicity has a suitable Hölder regularity even in the range where it is not necessarily constant.References
- Tristan Buckmaster, Camillo de Lellis, László Székelyhidi Jr., and Vlad Vicol, Onsager’s conjecture for admissible weak solutions, Comm. Pure Appl. Math. 72 (2019), no. 2, 229–274. MR 3896021, DOI 10.1002/cpa.21781
- Tristan Buckmaster, Camillo De Lellis, Philip Isett, and László Székelyhidi Jr., Anomalous dissipation for $1/5$-Hölder Euler flows, Ann. of Math. (2) 182 (2015), no. 1, 127–172. MR 3374958, DOI 10.4007/annals.2015.182.1.3
- Tristan Buckmaster and Vlad Vicol, Nonuniqueness of weak solutions to the Navier-Stokes equation, Ann. of Math. (2) 189 (2019), no. 1, 101–144. MR 3898708, DOI 10.4007/annals.2019.189.1.3
- Dongho Chae, Remarks on the helicity of the 3-D incompressible Euler equations, Comm. Math. Phys. 240 (2003), no. 3, 501–507. MR 2005854, DOI 10.1007/s00220-003-0910-9
- A. Cheskidov, P. Constantin, S. Friedlander, and R. Shvydkoy, Energy conservation and Onsager’s conjecture for the Euler equations, Nonlinearity 21 (2008), no. 6, 1233–1252. MR 2422377, DOI 10.1088/0951-7715/21/6/005
- Maria Colombo, Camillo De Lellis, and Luigi De Rosa, Ill-posedness of Leray solutions for the hypodissipative Navier-Stokes equations, Comm. Math. Phys. 362 (2018), no. 2, 659–688. MR 3843425, DOI 10.1007/s00220-018-3177-x
- M. Colombo and L. De Rosa. Regularity in time of Hölder solutions of Euler and hypodissipative Navier-Stokes equations. arXiv:1811.12870 [math.AP] , 2018.
- Peter Constantin, Weinan E, and Edriss S. Titi, Onsager’s conjecture on the energy conservation for solutions of Euler’s equation, Comm. Math. Phys. 165 (1994), no. 1, 207–209. MR 1298949, DOI 10.1007/BF02099744
- Camillo De Lellis and László Székelyhidi Jr., Dissipative Euler flows and Onsager’s conjecture, J. Eur. Math. Soc. (JEMS) 16 (2014), no. 7, 1467–1505. MR 3254331, DOI 10.4171/JEMS/466
- Luigi De Rosa, Infinitely many Leray-Hopf solutions for the fractional Navier-Stokes equations, Comm. Partial Differential Equations 44 (2019), no. 4, 335–365. MR 3941228, DOI 10.1080/03605302.2018.1547745
- Gregory L. Eyink, Energy dissipation without viscosity in ideal hydrodynamics. I. Fourier analysis and local energy transfer, Phys. D 78 (1994), no. 3-4, 222–240. MR 1302409, DOI 10.1016/0167-2789(94)90117-1
- Philip Isett, A proof of Onsager’s conjecture, Ann. of Math. (2) 188 (2018), no. 3, 871–963. MR 3866888, DOI 10.4007/annals.2018.188.3.4
- P. Isett. Regularity in time along the coarse scale flow for the incompressible Euler equations. preprint arXiv:1307.0565, 2013.
- L. Onsager, Statistical hydrodynamics, Nuovo Cimento (9) 6 (1949), no. Supplemento, 2 (Convegno Internazionale di Meccanica Statistica), 279–287. MR 36116, DOI 10.1007/BF02780991
Bibliographic Information
- Luigi De Rosa
- Affiliation: EPFL SB, Station 8, CH-1015 Lausanne, Switzerland
- MR Author ID: 1282108
- Email: luigi.derosa@epfl.ch
- Received by editor(s): March 15, 2019
- Received by editor(s) in revised form: November 1, 2019, and November 18, 2019
- Published electronically: February 26, 2020
- Communicated by: Catherine Sulem
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 2969-2979
- MSC (2010): Primary 35Q31, 35A01, 35D30
- DOI: https://doi.org/10.1090/proc/14952
- MathSciNet review: 4099784