## Sharp polynomial decay rates for the damped wave equation with Hölder-like damping

HTML articles powered by AMS MathViewer

- by Kiril Datchev and Perry Kleinhenz PDF
- Proc. Amer. Math. Soc.
**148**(2020), 3417-3425 Request permission

## Abstract:

We study decay rates for the energy of solutions of the damped wave equation on the torus. We consider dampings invariant in one direction and bounded above and below by multiples of $x^{\beta }$ near the boundary of the support and show decay at rate $1/t^{\frac {\beta +2}{\beta +3}}$. In the case where $W$ vanishes exactly like $x^{\beta }$ this result is optimal by [Comm. Math. Phys. 369 (2019), pp. 1187–1205]. The proof uses a version of the Morawetz multiplier method.## References

- Nalini Anantharaman and Matthieu Léautaud,
*Sharp polynomial decay rates for the damped wave equation on the torus*, Anal. PDE**7**(2014), no. 1, 159–214. With an appendix by Stéphane Nonnenmacher. MR**3219503**, DOI 10.2140/apde.2014.7.159 - Nicolas Burq and Patrick Gérard,
*Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes*, C. R. Acad. Sci. Paris Sér. I Math.**325**(1997), no. 7, 749–752 (French, with English and French summaries). MR**1483711**, DOI 10.1016/S0764-4442(97)80053-5 - N. Burq and P. Gérard,
*Stabilisation of wave equations on the torus with rough dampings*, arXiv:1801.00983, 2018. - Nicolas Burq and Michael Hitrik,
*Energy decay for damped wave equations on partially rectangular domains*, Math. Res. Lett.**14**(2007), no. 1, 35–47. MR**2289618**, DOI 10.4310/MRL.2007.v14.n1.a3 - Claude Bardos, Gilles Lebeau, and Jeffrey Rauch,
*Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary*, SIAM J. Control Optim.**30**(1992), no. 5, 1024–1065. MR**1178650**, DOI 10.1137/0330055 - Alexander Borichev and Yuri Tomilov,
*Optimal polynomial decay of functions and operator semigroups*, Math. Ann.**347**(2010), no. 2, 455–478. MR**2606945**, DOI 10.1007/s00208-009-0439-0 - Nicolas Burq,
*Décroissance de l’énergie locale de l’équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel*, Acta Math.**180**(1998), no. 1, 1–29 (French). MR**1618254**, DOI 10.1007/BF02392877 - Nicolas Burq and Maciej Zworski,
*Control for Schrödinger operators on tori*, Math. Res. Lett.**19**(2012), no. 2, 309–324. MR**2955763**, DOI 10.4310/MRL.2012.v19.n2.a4 - Nicolas Burq and Maciej Zworski,
*Rough controls for Schrödinger operators on 2-tori*, Ann. H. Lebesgue**2**(2019), 331–347 (English, with English and French summaries). MR**3978391**, DOI 10.5802/ahl.19 - T. J. Christiansen and K. Datchev,
*Resolvent estimates on asymptotically cylindrical manifolds and on the half line*, arXiv:1705.08969, 2017, Ann. Sci. Éc. Norm. Supér., accepted. - Hans Christianson, Emmanuel Schenck, András Vasy, and Jared Wunsch,
*From resolvent estimates to damped waves*, J. Anal. Math.**122**(2014), 143–162. MR**3183526**, DOI 10.1007/s11854-014-0006-9 - F. Cardoso and G. Vodev,
*Uniform estimates of the resolvent of the Laplace-Beltrami operator on infinite volume Riemannian manifolds. II*, Ann. Henri Poincaré**3**(2002), no. 4, 673–691. MR**1933365**, DOI 10.1007/s00023-002-8631-8 - Maarten de Hoop, Gunther Uhlmann, and András Vasy,
*Diffraction from conormal singularities*, Ann. Sci. Éc. Norm. Supér. (4)**48**(2015), no. 2, 351–408 (English, with English and French summaries). MR**3346174**, DOI 10.24033/asens.2247 - S. Dyatlov, L. Jin, and S. Nonnenmacher,
*Control of eigenfunctions on surfaces of variable curvature*, arXiv:1906.08923, 2019. - Kiril R. Datchev, Daniel D. Kang, and Andre P. Kessler,
*Non-trapping surfaces of revolution with long-living resonances*, Math. Res. Lett.**22**(2015), no. 1, 23–42. MR**3342177**, DOI 10.4310/MRL.2015.v22.n1.a3 - O. Gannot and J. Wunsch,
*Resonance-free regions for diffractive trapping by conormal potentials*, arXiv:1809.03012, 2018, Am. J. Math., accepted. - O. Gannot and J. Wunsch,
*Semiclassical diffraction by conormal potential singularities*, arXiv:1806.01813, 2018. - S. Jaffard,
*Contrôle interne exact des vibrations d’une plaque rectangulaire*, Portugal. Math.**47**(1990), no. 4, 423–429 (French, with English summary). MR**1090480** - Perry Kleinhenz,
*Stabilization rates for the damped wave equation with Hölder-regular damping*, Comm. Math. Phys.**369**(2019), no. 3, 1187–1205. MR**3975866**, DOI 10.1007/s00220-019-03459-8 - G. Lebeau,
*Équation des ondes amorties*, Algebraic and geometric methods in mathematical physics (Kaciveli, 1993) Math. Phys. Stud., vol. 19, Kluwer Acad. Publ., Dordrecht, 1996, pp. 73–109 (French, with English and French summaries). MR**1385677** - Matthieu Léautaud and Nicolas Lerner,
*Energy decay for a locally undamped wave equation*, Ann. Fac. Sci. Toulouse Math. (6)**26**(2017), no. 1, 157–205 (English, with English and French summaries). MR**3626005**, DOI 10.5802/afst.1528 - Zhuangyi Liu and Bopeng Rao,
*Characterization of polynomial decay rate for the solution of linear evolution equation*, Z. Angew. Math. Phys.**56**(2005), no. 4, 630–644. MR**2185299**, DOI 10.1007/s00033-004-3073-4 - Fabricio Macià,
*High-frequency propagation for the Schrödinger equation on the torus*, J. Funct. Anal.**258**(2010), no. 3, 933–955. MR**2558183**, DOI 10.1016/j.jfa.2009.09.020 - Cathleen S. Morawetz,
*The decay of solutions of the exterior initial-boundary value problem for the wave equation*, Comm. Pure Appl. Math.**14**(1961), 561–568. MR**132908**, DOI 10.1002/cpa.3160140327 - S. Nonnenmacher,
*Spectral theory of damped quantum chaotic systems*, J. Équ. Dériv. Partielles,**2011**(2011), 1–23. 2011. - James V. Ralston,
*Solutions of the wave equation with localized energy*, Comm. Pure Appl. Math.**22**(1969), 807–823. MR**254433**, DOI 10.1002/cpa.3160220605 - Jeffrey Rauch and Michael Taylor,
*Exponential decay of solutions to hyperbolic equations in bounded domains*, Indiana Univ. Math. J.**24**(1974), 79–86. MR**361461**, DOI 10.1512/iumj.1974.24.24004 - Reinhard Stahn,
*Optimal decay rate for the wave equation on a square with constant damping on a strip*, Z. Angew. Math. Phys.**68**(2017), no. 2, Paper No. 36, 10. MR**3609242**, DOI 10.1007/s00033-017-0781-0

## Additional Information

**Kiril Datchev**- Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
- MR Author ID: 860651
- Email: kdatchev@purdue.edu
**Perry Kleinhenz**- Affiliation: Department of Mathematics, Northwestern University, Evanston, Illinois 60208
- MR Author ID: 1329164
- Email: pbk@math.northwestern.edu
- Received by editor(s): September 6, 2019
- Received by editor(s) in revised form: December 18, 2019
- Published electronically: May 8, 2020
- Additional Notes: The first author was partially supported by NSF Grant DMS-1708511.

The second author was partially supported by the National Science Foundation grant RTG: Analysis on Manifolds at Northwestern University. - Communicated by: Ariel Barton
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**148**(2020), 3417-3425 - MSC (2010): Primary 35L05, 47A10
- DOI: https://doi.org/10.1090/proc/15018
- MathSciNet review: 4108848