A category-theoretic characterization of almost measurable cardinals
HTML articles powered by AMS MathViewer
- by Michael Lieberman
- Proc. Amer. Math. Soc. 148 (2020), 4065-4077
- DOI: https://doi.org/10.1090/proc/15076
- Published electronically: June 1, 2020
- PDF | Request permission
Abstract:
Through careful analysis of an argument of [Proc. Amer. Math. Soc. 145 (2017), pp. 1317–1327], we show that the powerful image of any accessible functor is closed under colimits of $\kappa$-chains, $\kappa$ a sufficiently large almost measurable cardinal. This condition on powerful images, by methods resembling those of [J. Symb. Log. 81 (2016), pp. 151–165], implies $\kappa$-locality of Galois-types. As this, in turn, implies sufficient measurability of $\kappa$, via [Proc. Amer. Math. Soc. 145 (2017), pp. 4517–4532], we obtain an equivalence: a purely category-theoretic characterization of almost measurable cardinals.References
- Jiří Adámek and Jiří Rosický, Locally presentable and accessible categories, London Mathematical Society Lecture Note Series, vol. 189, Cambridge University Press, Cambridge, 1994. MR 1294136, DOI 10.1017/CBO9780511600579
- John T. Baldwin, Categoricity, University Lecture Series, vol. 50, American Mathematical Society, Providence, RI, 2009. MR 2532039, DOI 10.1090/ulect/050
- Will Boney, Rami Grossberg, Michael Lieberman, Jiří Rosický, and Sebastien Vasey, $\mu$-abstract elementary classes and other generalizations, J. Pure Appl. Algebra 220 (2016), no. 9, 3048–3066. MR 3486290, DOI 10.1016/j.jpaa.2016.02.002
- W. Boney and M. Lieberman, Tameness, powerful images, and large cardinals, Submitted. URL: arXiv:1902.10212v4.
- Joan Bagaria and Menachem Magidor, Group radicals and strongly compact cardinals, Trans. Amer. Math. Soc. 366 (2014), no. 4, 1857–1877. MR 3152715, DOI 10.1090/S0002-9947-2013-05871-0
- W. Boney, Model-theoretic characterizations of large cardinals, to appear in Israel Journal of Mathematics. URL: arXiv:1708.07561v3.
- Will Boney, Tameness from large cardinal axioms, J. Symb. Log. 79 (2014), no. 4, 1092–1119. MR 3343531, DOI 10.1017/jsl.2014.30
- T. Beke and J. Rosický, Abstract elementary classes and accessible categories, Ann. Pure Appl. Logic 163 (2012), no. 12, 2008–2017. MR 2964883, DOI 10.1016/j.apal.2012.06.003
- A. Brooke-Taylor and J. Rosický, Accessible images revisited, Proc. Amer. Math. Soc. 145 (2017), no. 3, 1317–1327. MR 3589328, DOI 10.1090/proc/13190
- Will Boney and Spencer Unger, Large cardinal axioms from tameness in AECs, Proc. Amer. Math. Soc. 145 (2017), no. 10, 4517–4532. MR 3690634, DOI 10.1090/proc/13555
- C. C. Chang and H. J. Keisler, Model theory, 2nd ed., Studies in Logic and the Foundations of Mathematics, vol. 73, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. MR 0532927
- Thomas Jech, Set theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003. The third millennium edition, revised and expanded. MR 1940513
- Michael J. Lieberman, Category-theoretic aspects of abstract elementary classes, Ann. Pure Appl. Logic 162 (2011), no. 11, 903–915. MR 2817563, DOI 10.1016/j.apal.2011.05.002
- M. Lieberman and J. Rosický, Classification theory for accessible categories, J. Symb. Log. 81 (2016), no. 1, 151–165. MR 3471133, DOI 10.1017/jsl.2014.85
- M. Lieberman and J. Rosický, Hanf numbers via accessible images, Log. Methods Comput. Sci. 13 (2017), no. 2, Paper No. 11, 15. MR 3667927, DOI 10.23638/LMCS-13(2:11)2017
- Michael Lieberman, Jiří Rosický, and Sebastien Vasey, Internal sizes in $\mu$-abstract elementary classes, J. Pure Appl. Algebra 223 (2019), no. 10, 4560–4582. MR 3958105, DOI 10.1016/j.jpaa.2019.02.004
- Michael Makkai and Robert Paré, Accessible categories: the foundations of categorical model theory, Contemporary Mathematics, vol. 104, American Mathematical Society, Providence, RI, 1989. MR 1031717, DOI 10.1090/conm/104
- S. Shelah, Maximal failures of sequence locality in A.E.C., Preprint, URL: arXiv:0903.3614v4.
- Saharon Shelah, Classification of nonelementary classes. II. Abstract elementary classes, Classification theory (Chicago, IL, 1985) Lecture Notes in Math., vol. 1292, Springer, Berlin, 1987, pp. 419–497. MR 1033034, DOI 10.1007/BFb0082243
Bibliographic Information
- Michael Lieberman
- Affiliation: Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Brno, Czech Republic; and Department of Mathematics, Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
- MR Author ID: 938223
- Email: qmlieberman@vutbr.cz
- Received by editor(s): October 3, 2018
- Received by editor(s) in revised form: December 13, 2019
- Published electronically: June 1, 2020
- Additional Notes: The author was supported by the Grant Agency of the Czech Republic under the grant P201/12/G028.
- Communicated by: Heike Mildenberger
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 4065-4077
- MSC (2010): Primary 03E55, 18C35; Secondary 03E75, 03C20, 03C48, 03C75
- DOI: https://doi.org/10.1090/proc/15076
- MathSciNet review: 4127849