## The equivariant Ehrhart theory of the permutahedron

HTML articles powered by AMS MathViewer

- by Federico Ardila, Mariel Supina and Andrés R. Vindas-Meléndez PDF
- Proc. Amer. Math. Soc.
**148**(2020), 5091-5107 Request permission

## Abstract:

Equivariant Ehrhart theory enumerates the lattice points in a polytope with respect to a group action. Answering a question of Stapledon, we describe the equivariant Ehrhart theory of the permutahedron, and we prove his Effectiveness Conjecture in this special case.## References

- Federico Ardila, Matthias Beck, and Jodi McWhirter,
*Ehrhart quasipolynomials of Coxeter permutahedra*, arXiv:2004.02952, Rev. Acad. Colombiana Ci. Exact. Fis. Nat., to appear. - Federico Ardila, Anna Schindler, and Andrés R. Vindas-Meléndez,
*The equivariant volumes of the permutahedron*, Discrete and Computational Geometry (2019), 1–18. - Welleda Baldoni and Michèle Vergne,
*Kostant partitions functions and flow polytopes*, Transform. Groups**13**(2008), no. 3-4, 447–469. MR**2452600**, DOI 10.1007/s00031-008-9019-8 - Matthias Beck and Sinai Robins,
*Computing the continuous discretely*, Undergraduate Texts in Mathematics, Springer, New York, 2007. Integer-point enumeration in polyhedra. MR**2271992** - David A. Cox, John B. Little, and Henry K. Schenck,
*Toric varieties*, Graduate Studies in Mathematics, vol. 124, American Mathematical Society, Providence, RI, 2011. MR**2810322**, DOI 10.1090/gsm/124 - Igor Dolgachev and Valery Lunts,
*A character formula for the representation of a Weyl group in the cohomology of the associated toric variety*, J. Algebra**168**(1994), no. 3, 741–772. MR**1293622**, DOI 10.1006/jabr.1994.1251 - Eugène Ehrhart,
*Sur les polyèdres rationnels homothétiques à $n$ dimensions*, C. R. Acad. Sci. Paris**254**(1962), 616–618 (French). MR**130860** - William Fulton,
*Introduction to toric varieties*, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry. MR**1234037**, DOI 10.1515/9781400882526 - William Fulton and Joe Harris,
*Representation theory*, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. A first course; Readings in Mathematics. MR**1153249**, DOI 10.1007/978-1-4612-0979-9 - June Huh,
*Rota’s conjecture and positivity of algebraic cycles in permutohedral varieties*, ProQuest LLC, Ann Arbor, MI, 2014. Thesis (Ph.D.)–University of Michigan. MR**3321982** - A. G. Hovanskiĭ,
*Newton polyhedra, and toroidal varieties*, Funkcional. Anal. i Priložen.**11**(1977), no. 4, 56–64, 96 (Russian). MR**0476733** - A. Losev and Y. Manin,
*New moduli spaces of pointed curves and pencils of flat connections*, Michigan Math. J.**48**(2000), 443–472. Dedicated to William Fulton on the occasion of his 60th birthday. MR**1786500**, DOI 10.1307/mmj/1030132728 - Jodi McWhirter,
*Ehrhart quasipolynomials of Coxeter permutahedra*, Master’s Thesis, 2019. - Karola Mészáros and Alejandro H. Morales,
*Flow polytopes of signed graphs and the Kostant partition function*, Int. Math. Res. Not. IMRN**3**(2015), 830–871. MR**3340339**, DOI 10.1093/imrn/rnt212 - Robert Morelli,
*Pick’s theorem and the Todd class of a toric variety*, Adv. Math.**100**(1993), no. 2, 183–231. MR**1234309**, DOI 10.1006/aima.1993.1033 - N. Perminov and Sh. Shakirov,
*Discriminants of symmetric polynomials*, arXiv e-prints (2009Oct), arXiv:0910.5757, available at 0910.5757. - James E. Pommersheim,
*Toric varieties, lattice points and Dedekind sums*, Math. Ann.**295**(1993), no. 1, 1–24. MR**1198839**, DOI 10.1007/BF01444874 - C. Procesi,
*The toric variety associated to Weyl chambers*, Mots, Lang. Raison. Calc., Hermès, Paris, 1990, pp. 153–161. MR**1252661** - G. C. Shephard,
*Combinatorial properties of associated zonotopes*, Canadian J. Math.**26**(1974), 302–321. MR**362054**, DOI 10.4153/CJM-1974-032-5 - Richard P. Stanley,
*A zonotope associated with graphical degree sequences*, Applied geometry and discrete mathematics, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 4, Amer. Math. Soc., Providence, RI, 1991, pp. 555–570. MR**1116376** - Alan Stapledon,
*Equivariant Ehrhart theory*, Adv. Math.**226**(2011), no. 4, 3622–3654. MR**2764900**, DOI 10.1016/j.aim.2010.10.019 - Alan Stapledon,
*Representations on the cohomology of hypersurfaces and mirror symmetry*, Adv. Math.**226**(2011), no. 6, 5268–5297. MR**2775901**, DOI 10.1016/j.aim.2011.01.006 - John R. Stembridge,
*Some permutation representations of Weyl groups associated with the cohomology of toric varieties*, Adv. Math.**106**(1994), no. 2, 244–301. MR**1279220**, DOI 10.1006/aima.1994.1058

## Additional Information

**Federico Ardila**- Affiliation: Department of Mathematics, San Francisco State University, 1600 Holloway Avenue, San Francisco, California 94132; Department of Mathematics, Universidad de Los Andes, Bogota, Columbia
- MR Author ID: 725066
- Email: federico@sfsu.edu
**Mariel Supina**- Affiliation: Department of Mathematics, 970 Evans Hall, University of California, Berkeley, Berkeley, California 94720-3840
- Email: mariel_supina@berkeley.edu
**Andrés R. Vindas-Meléndez**- Affiliation: Department of Mathematics, San Francisco State University, 1600 Holloway Avenue, San Francisco, California 94132; Department of Mathematics, 719 Patterson Office Tower, University of Kentucky, Lexington, Kentucky 40506-0027
- MR Author ID: 1353509
- ORCID: 0000-0002-7437-3745
- Email: andres.vindas@uky.edu
- Received by editor(s): November 22, 2019
- Received by editor(s) in revised form: March 6, 2020
- Published electronically: September 17, 2020
- Additional Notes: This work was completed while the first author was a Spring 2019 Visiting Professor at the Simons Institute for Theoretical Computer Science in Berkeley, and a 2019–2020 Simons Fellow while on sabbatical in Bogotá.

The authors were supported by NSF Award DMS-1600609 and DMS-1855610 and Simons Fellowship 613384 (FA), the Graduate Fellowships for STEM Diversity (MS), and NSF Graduate Research Fellowship DGE-1247392 (ARVM) - Communicated by: Patricia L Hersh
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**148**(2020), 5091-5107 - MSC (2010): Primary 14L30, 14M25, 52B15, 52B20, 05E18
- DOI: https://doi.org/10.1090/proc/15113
- MathSciNet review: 4163825