## Toward free resolutions over scrolls

HTML articles powered by AMS MathViewer

- by Laura Felicia Matusevich and Aleksandra Sobieska PDF
- Proc. Amer. Math. Soc.
**148**(2020), 5071-5086 Request permission

## Abstract:

Let $R=\Bbbk [x]/I$ where $I$ is the defining ideal of a rational normal $k$-scroll. We compute the Betti numbers of the ground field $\Bbbk$ as a module over $R$. For $k=2$, we give the minimal free resolution of $\Bbbk$ over $R$.## References

- Winfried Bruns, Jürgen Herzog, and Udo Vetter,
*Syzygies and walks*, Commutative algebra (Trieste, 1992) World Sci. Publ., River Edge, NJ, 1994, pp. 36–57. MR**1421076** - David A. Buchsbaum and David Eisenbud,
*What makes a complex exact?*, J. Algebra**25**(1973), 259–268. MR**314819**, DOI 10.1016/0021-8693(73)90044-6 - Michael L. Catalano-Johnson,
*The resolution of the ideal of $2\times 2$ minors of a $2\times n$ matrix of linear forms*, J. Algebra**187**(1997), no. 1, 39–48. MR**1425558**, DOI 10.1006/jabr.1997.6801 - David Eisenbud,
*Commutative algebra*, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR**1322960**, DOI 10.1007/978-1-4612-5350-1 - R. Fröberg,
*Koszul algebras*, Advances in commutative ring theory (Fez, 1997) Lecture Notes in Pure and Appl. Math., vol. 205, Dekker, New York, 1999, pp. 337–350. MR**1767430** - R. Fröberg,
*Koszul algebras*, Advances in commutative ring theory (Fez, 1997) Lecture Notes in Pure and Appl. Math., vol. 205, Dekker, New York, 1999, pp. 337–350. MR**1767430** - Ralph Fröberg,
*Determination of a class of Poincaré series*, Math. Scand.**37**(1975), no. 1, 29–39. MR**404254**, DOI 10.7146/math.scand.a-11585 - Vesselin Gasharov, Noam Horwitz, and Irena Peeva,
*Hilbert functions over toric rings*, Michigan Math. J.**57**(2008), 339–357. Special volume in honor of Melvin Hochster. MR**2492457**, DOI 10.1307/mmj/1220879413 - Andrew R. Kustin, Claudia Polini, and Bernd Ulrich,
*Divisors on rational normal scrolls*, J. Algebra**322**(2009), no. 5, 1748–1773. MR**2543633**, DOI 10.1016/j.jalgebra.2009.05.010 - Hop D. Nguyen, Phong Dinh Thieu, and Thanh Vu,
*Koszul determinantal rings and $2 \times e$ matrices of linear forms*, Michigan Math. J.**64**(2015), no. 2, 349–381. MR**3359030**, DOI 10.1307/mmj/1434731928 - Irena Peeva,
*Infinite free resolutions over toric rings*, Syzygies and Hilbert functions, Lect. Notes Pure Appl. Math., vol. 254, Chapman & Hall/CRC, Boca Raton, FL, 2007, pp. 233–247. MR**2309932**, DOI 10.1201/9781420050912 - Irena Peeva, Victor Reiner, and Bernd Sturmfels,
*How to shell a monoid*, Math. Ann.**310**(1998), no. 2, 379–393. MR**1602024**, DOI 10.1007/s002080050152 - Sonja Petrović,
*On the universal Gröbner bases of varieties of minimal degree*, Math. Res. Lett.**15**(2008), no. 6, 1211–1221. MR**2470395**, DOI 10.4310/MRL.2008.v15.n6.a11

## Additional Information

**Laura Felicia Matusevich**- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843
- MR Author ID: 632562
- Email: laura@math.tamu.edu
**Aleksandra Sobieska**- Affiliation: Department of Mathematics, University of Wisconsin-Madison, Madison, Wisconsin 53706
- MR Author ID: 1176078
- ORCID: 0000-0002-1150-3725
- Email: asobieska@math.wisc.edu
- Received by editor(s): March 28, 2019
- Received by editor(s) in revised form: February 24, 2020
- Published electronically: September 24, 2020
- Additional Notes: The authors were partially supported by NSF grant DMS-1500832.
- Communicated by: Jerzy Weyman
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**148**(2020), 5071-5086 - MSC (2010): Primary 13D02, 16S37; Secondary 16S36, 13F55
- DOI: https://doi.org/10.1090/proc/15150
- MathSciNet review: 4163823