Generalized Whitney topologies are Baire
HTML articles powered by AMS MathViewer
- by Edson de Faria and Peter Hazard
- Proc. Amer. Math. Soc. 148 (2020), 5441-5455
- DOI: https://doi.org/10.1090/proc/15168
- Published electronically: August 14, 2020
- PDF | Request permission
Abstract:
In this paper we show that certain generalizations of the $C^r$-Whitney topology, which include the Hölder-Whitney and Sobolev-Whitney topologies on smooth manifolds, satisfy the Baire property, to wit, the countable intersection of open and dense sets is dense.References
- Ralph Abraham and Joel Robbin, Transversal mappings and flows, W. A. Benjamin, Inc., New York-Amsterdam, 1967. An appendix by Al Kelley. MR 0240836
- Assis Azevedo, Davide Azevedo, Mário Bessa, and Maria Joana Torres, Sobolev homeomorphisms are dense in volume preserving automorphisms, J. Funct. Anal. 276 (2019), no. 10, 3261–3274. MR 3944293, DOI 10.1016/j.jfa.2018.10.008
- Fabrice Bethuel, The approximation problem for Sobolev maps between two manifolds, Acta Math. 167 (1991), no. 3-4, 153–206. MR 1120602, DOI 10.1007/BF02392449
- Alberto P. Calderón, On the differentiability of absolutely continuous functions, Riv. Mat. Univ. Parma 2 (1951), 203–213. MR 45200
- Lamberto Cesari, Sulle funzioni assolutamente continue in due variabili, Ann. Scuola Norm. Super. Pisa Cl. Sci. (2) 10 (1941), 91–101 (Italian). MR 5911
- Edson de Faria, Peter Hazard, and Charles Tresser, Infinite entropy is generic in Hölder and Sobolev spaces, C. R. Math. Acad. Sci. Paris 355 (2017), no. 11, 1185–1189 (English, with English and French summaries). MR 3724883, DOI 10.1016/j.crma.2017.10.016
- E. de Faria, P. Hazard, and C. Tresser, Genericity of infinite entropy for maps with low regularity, to appear in Ann. Scuola Norm. Sup. Pisa. arXiv:1709.02431.
- R. de la Llave and R. Obaya, Decomposition theorems for groups of diffeomorphisms in the sphere, Trans. Amer. Math. Soc. 352 (2000), no. 3, 1005–1020. MR 1608297, DOI 10.1090/S0002-9947-99-02320-X
- R. de la Llave and R. Obaya, Regularity of the composition operator in spaces of Hölder functions, Discrete Contin. Dynam. Systems 5 (1999), no. 1, 157–184. MR 1664481, DOI 10.3934/dcds.1999.5.157
- Alastair Fletcher and Vladimir Markovic, Decomposing diffeomorphisms of the sphere, Bull. Lond. Math. Soc. 44 (2012), no. 3, 599–609. MR 2967005, DOI 10.1112/blms/bdr111
- F. W. Gehring and Olli Lehto, On the total differentiability of functions of a complex variable, Ann. Acad. Sci. Fenn. Ser. A I 272 (1959), 9. MR 0124487
- Morris W. Hirsch, Differential topology, Graduate Texts in Mathematics, vol. 33, Springer-Verlag, New York, 1994. Corrected reprint of the 1976 original. MR 1336822
- John L. Kelley, General topology, Graduate Texts in Mathematics, No. 27, Springer-Verlag, New York-Berlin, 1975. Reprint of the 1955 edition [Van Nostrand, Toronto, Ont.]. MR 0370454
- Ivan Kupka, Contribution à la théorie des champs génériques, Contributions to Differential Equations 2 (1963), 457–484 (French). MR 165536
- Vladimir Maz’ya, Sobolev spaces with applications to elliptic partial differential equations, Second, revised and augmented edition, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 342, Springer, Heidelberg, 2011. MR 2777530, DOI 10.1007/978-3-642-15564-2
- John C. Oxtoby, Measure and category, 2nd ed., Graduate Texts in Mathematics, vol. 2, Springer-Verlag, New York-Berlin, 1980. A survey of the analogies between topological and measure spaces. MR 584443
- M. M. Peixoto, Structural stability on two-dimensional manifolds, Topology 1 (1962), 101–120. MR 142859, DOI 10.1016/0040-9383(65)90018-2
- R. Schoen and K. Uhlenbeck. Approximation theorems for Sobolev mappings. Preprint, 1984.
- S. Smale, Stable manifolds for differential equations and diffeomorphisms, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 17 (1963), 97–116. MR 165537
- Jussi Väisälä, Two new characterizations for quasiconformality, Ann. Acad. Sci. Fenn. Ser. A I 362 (1965), 12. MR 0174782
- Eduard Zehnder, Note on smoothing symplectic and volume-preserving diffeomorphisms, Geometry and topology (Proc. III Latin Amer. School of Math., Inst. Mat. Pura Aplicada CNPq, Rio de Janeiro, 1976) Lecture Notes in Math., Vol. 597, Springer, Berlin, 1977, pp. 828–854. MR 0467846
- William P. Ziemer, Weakly differentiable functions, Graduate Texts in Mathematics, vol. 120, Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation. MR 1014685, DOI 10.1007/978-1-4612-1015-3
Bibliographic Information
- Edson de Faria
- Affiliation: Instituto de Matemática e Estatística, USP, São Paulo, SP, Brazil
- MR Author ID: 357550
- Email: edson@ime.usp.br
- Peter Hazard
- Affiliation: Instituto de Matemática e Estatística, Universidade Federal Fluminense, Niterói, RJ, Brazil
- MR Author ID: 950009
- Email: peterh@id.uff.br
- Received by editor(s): October 4, 2018
- Received by editor(s) in revised form: April 26, 2020
- Published electronically: August 14, 2020
- Additional Notes: This work has been supported by “Projeto Temático Dinâmica e Geometria em Baixas Dimensões” FAPESP Grant 2016/25053-8, FAPESP Grant 2015/17909-7, CAPES Grant CSF-PVE-S - 88887.117899/2016-00, a CAPES/PNPD Grant and the EU Marie-Curie IRSES Brazilian-European partnership in Dynamical Systems (FP7-PEOPLE-2012-IRSES 318999 BREUDS)
- Communicated by: Nimish Shah
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 5441-5455
- MSC (2010): Primary 58C07; Secondary 54E52, 46E35, 26A16
- DOI: https://doi.org/10.1090/proc/15168
- MathSciNet review: 4163855