Well-posedness of water wave model with viscous effects
HTML articles powered by AMS MathViewer
- by Rafael Granero-Belinchón and Stefano Scrobogna
- Proc. Amer. Math. Soc. 148 (2020), 5181-5191
- DOI: https://doi.org/10.1090/proc/15219
- Published electronically: September 18, 2020
- PDF | Request permission
Abstract:
Starting from the paper by Dias, Dyachenko, and Zakharov (Physics Letters A, 2008) on viscous water waves, we derive a model that describes water waves with viscosity moving in deep water with or without surface tension effects. This equation takes the form of a nonlocal fourth order wave equation and retains the main contributions to the dynamics of the free surface. Then, we prove the well-posedness in Sobolev spaces of such an equation.References
- Benjamin Akers and Paul A. Milewski, Dynamics of three-dimensional gravity-capillary solitary waves in deep water, SIAM J. Appl. Math. 70 (2010), no. 7, 2390–2408. MR 2678044, DOI 10.1137/090758386
- Benjamin Akers and David P. Nicholls, Traveling waves in deep water with gravity and surface tension, SIAM J. Appl. Math. 70 (2010), no. 7, 2373–2389. MR 2678043, DOI 10.1137/090771351
- David M. Ambrose, Jerry L. Bona, and David P. Nicholls, Well-posedness of a model for water waves with viscosity, Discrete Contin. Dyn. Syst. Ser. B 17 (2012), no. 4, 1113–1137. MR 2899939, DOI 10.3934/dcdsb.2012.17.1113
- J. Boussinesq, Lois de l’extinction de la houle en haute mer, C. R. Acad. Sci. Paris 121 (1895), no. 2, 15–20.
- C. H. Arthur Cheng, Rafael Granero-Belinchón, and Steve Shkoller, Well-posedness of the Muskat problem with $H^2$ initial data, Adv. Math. 286 (2016), 32–104. MR 3415681, DOI 10.1016/j.aim.2015.08.026
- C. H. Arthur Cheng, Rafael Granero-Belinchón, Steve Shkoller, and Jon Wilkening, Rigorous asymptotic models of water waves, Water Waves 1 (2019), no. 1, 71–130.
- W. Craig and C. Sulem, Numerical simulation of gravity waves, J. Comput. Phys. 108 (1993), no. 1, 73–83. MR 1239970, DOI 10.1006/jcph.1993.1164
- L. Dawson, H. McGahagan, and G. Ponce, On the decay properties of solutions to a class of Schrödinger equations, Proc. Amer. Math. Soc. 136 (2008), no. 6, 2081–2090. MR 2383514, DOI 10.1090/S0002-9939-08-09355-6
- Frederic Dias, Alexander I. Dyachenko, and Vladimir E. Zakharov, Theory of weakly damped free-surface flows: a new formulation based on potential flow solutions, Phys. Lett. A 372 (2008), no. 8, 1297–1302.
- Denys Dutykh, Visco-potential free-surface flows and long wave modelling, Eur. J. Mech. B Fluids 28 (2009), no. 3, 430–443. MR 2513897, DOI 10.1016/j.euromechflu.2008.11.003
- Denys Dutykh and Frédéric Dias, Dissipative Boussinesq equations, C. R. Mecanique 335 (2007), no. 9–10, 559–583.
- Denys Dutykh and Frédéric Dias, Viscous potential free-surface flows in a fluid layer of finite depth, C. R. Math. Acad. Sci. Paris 345 (2007), no. 2, 113–118 (English, with English and French summaries). MR 2343563, DOI 10.1016/j.crma.2007.06.007
- Denys Dutykh and Olivier Goubet, Derivation of dissipative Boussinesq equations using the Dirichlet-to-Neumann operator approach, Math. Comput. Simulation 127 (2016), 80–93. MR 3501289, DOI 10.1016/j.matcom.2013.12.008
- Loukas Grafakos and Seungly Oh, The Kato-Ponce inequality, Comm. Partial Differential Equations 39 (2014), no. 6, 1128–1157. MR 3200091, DOI 10.1080/03605302.2013.822885
- Rafael Granero-Belinchón and Stefano Scrobogna, On an asymptotic model for free boundary darcy flow in porous media, preprint, arXiv:1810.11798, 2018.
- Rafael Granero-Belinchón and Stefano Scrobogna, Asymptotic models for free boundary flow in porous media, Phys. D 392 (2019), 1–16. MR 3928312, DOI 10.1016/j.physd.2019.02.013
- Rafael Granero-Belinchón and Stefano Scrobogna, Models for damped water waves, SIAM J. Appl. Math. 79 (2019), no. 6, 2530–2550. MR 4041720, DOI 10.1137/19M1262899
- Rafael Granero-Belinchón and Stefano Scrobogna, Well-posedness of the water-wave with viscosity problem, preprint, arXiv:2003.11454, 2020, submitted.
- Rafael Granero-Belinchón and Steve Shkoller, A model for Rayleigh-Taylor mixing and interface turnover, Multiscale Model. Simul. 15 (2017), no. 1, 274–308. MR 3612171, DOI 10.1137/16M1083463
- Lei Jiang, Chao-Lung Ting, Marc Perlin, and William W. Schultz, Moderate and steep Faraday waves: instabilities, modulation and temporal asymmetries, J. Fluid Mech. 329 (1996), 275–307.
- D. D. Joseph and J. Wang, The dissipation approximation and viscous potential flow, J. Fluid Mech. 505 (2004), 365–377. MR 2259003, DOI 10.1017/S0022112004008602
- Maria Kakleas and David P. Nicholls, Numerical simulation of a weakly nonlinear model for water waves with viscosity, J. Sci. Comput. 42 (2010), no. 2, 274–290. MR 2578037, DOI 10.1007/s10915-009-9324-y
- Tosio Kato and Gustavo Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math. 41 (1988), no. 7, 891–907. MR 951744, DOI 10.1002/cpa.3160410704
- Carlos E. Kenig, Gustavo Ponce, and Luis Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math. 46 (1993), no. 4, 527–620. MR 1211741, DOI 10.1002/cpa.3160460405
- C. Skandrani, C. Kharif, and J. Poitevin, Nonlinear evolution of water surface waves: the frequency down-shift phenomenon, Mathematical problems in the theory of water waves (Luminy, 1995) Contemp. Math., vol. 200, Amer. Math. Soc., Providence, RI, 1996, pp. 157–171. MR 1410506, DOI 10.1090/conm/200/02514
- Horace Lamb, Hydrodynamics, 6th ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1993. With a foreword by R. A. Caflisch [Russel E. Caflisch]. MR 1317348
- Michael S. Longuet-Higgins, Theory of weakly damped Stokes waves: a new formulation and its physical interpretation, J. Fluid Mech. 235 (1992), 319–324. MR 1150193, DOI 10.1017/S0022112092001125
- Y Matsuno Nonlinear evolutions of surface gravity waves on fluid of finite depth. Physical review letters, 69(4):609, 1992.
- Y. Matsuno, Nonlinear evolution of surface gravity waves over an uneven bottom, J. Fluid Mech. 249 (1993), 121–133. MR 1214472, DOI 10.1017/S0022112093001107
- Yoshimasa Matsuno, Two-dimensional evolution of surface gravity waves on a fluid of arbitrary depth, Physical Review E, 47(6):4593, 1993.
- Marième Ngom and David P. Nicholls, Well-posedness and analyticity of solutions to a water wave problem with viscosity, J. Differential Equations 265 (2018), no. 10, 5031–5065. MR 3848244, DOI 10.1016/j.jde.2018.06.030
- K. D. Ruvinsky, F. I. Feldstein, and G. I. Freidman, Numerical simulations of the quasi-stationary stage of ripple excitation by steep gravity–capillary waves, J. Fluid Mech. 230 (1991), 339–353.
- K. D. Ruvinsky and G. I. Freidman, Improvement of the first Stokes method for the investigation of finite-amplitude potential gravity-capillary waves, IX All-Union Symp. on Diffraction and Propagation Waves, Tbilisi: Theses of Reports, volume 2, 1985, pp. 22–25.
- K. D. Ruvinsky and G. I. Freidman. The fine structure of strong gravity-capillary waves, Nonlinear waves: Structures and Bifurcations, AV Gaponov-Grekhov and MI Rabinovich, eds. Moscow: Nauka, pages 304–326, 1987.
- George Gabriel Stokes, On the Theory of Oscillatory Waves, volume 1 of Cambridge Library Collection - Mathematics, Cambridge University Press, 1847.
- J. Wang and D. D. Joseph, Purely irrotational theories of the effect of the viscosity on the decay of free gravity waves, J. Fluid Mech. 559 (2006), 461–472. MR 2266175, DOI 10.1017/S0022112006000401
- Guangyu Wu, Yuming Liu, and Dick K. P. Yue, A note on stabilizing the Benjamin-Feir instability, J. Fluid Mech. 556 (2006), 45–54. MR 2263443, DOI 10.1017/S0022112005008293
Bibliographic Information
- Rafael Granero-Belinchón
- Affiliation: Departamento de Matemáticas, Estadística y Computación, Universidad de Cantabria, Avenida. Los Castros s/n, Santander, Spain
- ORCID: 0000-0003-2752-8086
- Email: rafael.granero@unican.es
- Stefano Scrobogna
- Affiliation: IMUS, University of Seville, 41012 Sevilla, Spain; and Basque Center of Applied Mathematics, Mazarredo 14, 48009, Bilbao, Spain
- MR Author ID: 1229361
- Email: sscrobogna@bcamath.org
- Received by editor(s): November 5, 2019
- Received by editor(s) in revised form: March 31, 2020
- Published electronically: September 18, 2020
- Additional Notes: The first author was funded by the grant MTM2017-89976-P from the Spanish government.
The research of the second author was supported by the Basque Government through the BERC 2018-2021 program and by the Spanish Ministry of Economy and Competitiveness MINECO through BCAM Severo Ochoa excellence accreditation SEV-2017-0718 and through project MTM2017-82184-R funded by (AEI/FEDER, UE) and “DESFLU” and by the European Research Council through the Starting Grant project H2020-EU.1.1.-639227 FLUID-INTERFACE - Communicated by: Catherine Sulem
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 5181-5191
- MSC (2010): Primary 35Q35, 35R35, 35Q31, 35L25
- DOI: https://doi.org/10.1090/proc/15219
- MathSciNet review: 4163831