Local mixing on abelian covers of hyperbolic surfaces with cusps
HTML articles powered by AMS MathViewer
- by Wenyu Pan
- Proc. Amer. Math. Soc. 149 (2021), 2501-2514
- DOI: https://doi.org/10.1090/proc/15340
- Published electronically: March 22, 2021
- PDF | Request permission
Abstract:
We prove the local mixing theorem for geodesic flows on abelian covers of finite volume hyperbolic surfaces with cusps, which is a continuation of the work [Hee Oh and Wenyu Pan, Int. Math. Res. Not. 19 (2019), pp. 6036–6088]. We also describe applications to counting problems and the prime geodesic theorem.References
- Martine Babillot and François Ledrappier, Lalley’s theorem on periodic orbits of hyperbolic flows, Ergodic Theory Dynam. Systems 18 (1998), no. 1, 17–39. MR 1609507, DOI 10.1017/S0143385798100330
- Martine Babillot and François Ledrappier, Geodesic paths and horocycle flow on abelian covers, Lie groups and ergodic theory (Mumbai, 1996) Tata Inst. Fund. Res. Stud. Math., vol. 14, Tata Inst. Fund. Res., Bombay, 1998, pp. 1–32. MR 1699356
- Martine Babillot and Marc Peigné, Homologie des géodésiques fermées sur des variétés hyperboliques avec bouts cuspidaux, Ann. Sci. École Norm. Sup. (4) 33 (2000), no. 1, 81–120 (French, with English and French summaries). MR 1743720, DOI 10.1016/S0012-9593(00)00104-X
- Tim Bedford, Michael Keane, and Caroline Series (eds.), Ergodic theory, symbolic dynamics, and hyperbolic spaces, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1991. Papers from the Workshop on Hyperbolic Geometry and Ergodic Theory held in Trieste, April 17–28, 1989. MR 1130170
- S. G. Dani and John Smillie, Uniform distribution of horocycle orbits for Fuchsian groups, Duke Math. J. 51 (1984), no. 1, 185–194. MR 744294, DOI 10.1215/S0012-7094-84-05110-X
- Dmitry Dolgopyat and Omri Sarig, Asymptotic windings of horocycles, Israel J. Math. 228 (2018), no. 1, 119–176. MR 3874838, DOI 10.1007/s11856-018-1761-6
- W. Duke, Z. Rudnick, and P. Sarnak, Density of integer points on affine homogeneous varieties, Duke Math. J. 71 (1993), no. 1, 143–179. MR 1230289, DOI 10.1215/S0012-7094-93-07107-4
- Charles L. Epstein, Asymptotics for closed geodesics in a homology class, the finite volume case, Duke Math. J. 55 (1987), no. 4, 717–757. MR 916117, DOI 10.1215/S0012-7094-87-05536-0
- Alex Eskin and Curt McMullen, Mixing, counting, and equidistribution in Lie groups, Duke Math. J. 71 (1993), no. 1, 181–209. MR 1230290, DOI 10.1215/S0012-7094-93-07108-6
- Alexander Gorodnik, Hee Oh, and Nimish Shah, Strong wavefront lemma and counting lattice points in sectors, Israel J. Math. 176 (2010), 419–444. MR 2653201, DOI 10.1007/s11856-010-0035-8
- Y. Guivarc’h and J. Hardy, Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d’Anosov, Ann. Inst. H. Poincaré Probab. Statist. 24 (1988), no. 1, 73–98 (French, with English summary). MR 937957
- Y. Guivarch and Y. Le Jan, Note rectificative: “Asymptotic winding of the geodesic flow on modular surfaces and continued fractions” [Ann. Sci. École Norm. Sup. (4) 26 (1993), no. 1, 23–50; MR1209912 (94a:58157)], Ann. Sci. École Norm. Sup. (4) 29 (1996), no. 6, 811–814. MR 1422992
- Roger E. Howe and Calvin C. Moore, Asymptotic properties of unitary representations, J. Functional Analysis 32 (1979), no. 1, 72–96. MR 533220, DOI 10.1016/0022-1236(79)90078-8
- François Ledrappier and Omri Sarig, Fluctuations of ergodic sums for horocycle flows on $\Bbb Z^d$-covers of finite volume surfaces, Discrete Contin. Dyn. Syst. 22 (2008), no. 1-2, 247–325. MR 2410958, DOI 10.3934/dcds.2008.22.247
- Grigoriy A. Margulis, On some aspects of the theory of Anosov systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2004. With a survey by Richard Sharp: Periodic orbits of hyperbolic flows; Translated from the Russian by Valentina Vladimirovna Szulikowska. MR 2035655, DOI 10.1007/978-3-662-09070-1
- Gregory Margulis, Amir Mohammadi, and Hee Oh, Closed geodesics and holonomies for Kleinian manifolds, Geom. Funct. Anal. 24 (2014), no. 5, 1608–1636. MR 3261636, DOI 10.1007/s00039-014-0299-y
- Amir Mohammadi and Hee Oh, Matrix coefficients, counting and primes for orbits of geometrically finite groups, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 4, 837–897. MR 3336838, DOI 10.4171/JEMS/520
- Hee Oh, Harmonic analysis, ergodic theory and counting for thin groups, Thin groups and superstrong approximation, Math. Sci. Res. Inst. Publ., vol. 61, Cambridge Univ. Press, Cambridge, 2014, pp. 179–210. MR 3220891
- Hee Oh and Wenyu Pan, Local mixing and invariant measures for horospherical subgroups on abelian covers, Int. Math. Res. Not. IMRN 19 (2019), 6036–6088. MR 4016891, DOI 10.1093/imrn/rnx292
- Hee Oh and Nimish A. Shah, Equidistribution and counting for orbits of geometrically finite hyperbolic groups, J. Amer. Math. Soc. 26 (2013), no. 2, 511–562. MR 3011420, DOI 10.1090/S0894-0347-2012-00749-8
- Mark Pollicott and Richard Sharp, Orbit counting for some discrete groups acting on simply connected manifolds with negative curvature, Invent. Math. 117 (1994), no. 2, 275–302. MR 1273266, DOI 10.1007/BF01232242
- Thomas Roblin, Ergodicité et équidistribution en courbure négative, Mém. Soc. Math. Fr. (N.S.) 95 (2003), vi+96 (French, with English and French summaries). MR 2057305, DOI 10.24033/msmf.408
- Omri Sarig, Existence of Gibbs measures for countable Markov shifts, Proc. Amer. Math. Soc. 131 (2003), no. 6, 1751–1758. MR 1955261, DOI 10.1090/S0002-9939-03-06927-2
- O. Sarig, Lecture notes on thermodynamic formalism for topological Markov shifts.
- Manuel Stadlbauer, The return sequence of the Bowen-Series map for punctured surfaces, Fund. Math. 182 (2004), no. 3, 221–240. MR 2098779, DOI 10.4064/fm182-3-3
- Pekka Tukia, On discrete groups of the unit disk and their isomorphisms, Ann. Acad. Sci. Fenn. Ser. A. I. 504 (1972), 45 pp. (errata insert). MR 306487
- A. Velozo, Thermodynamic formalism and the entropy at infinity of the geodesic flow, Preprint, arXiv:1711.06796.
Bibliographic Information
- Wenyu Pan
- Affiliation: Pennsylvania State University, State College, Pennsylvania 16802
- Address at time of publication: Department of Mathematics, University of Chicago, Chicago, Illinois 60637
- MR Author ID: 1207609
- Email: wup60@psu.edu, wenyu@math.uchicago.edu
- Received by editor(s): September 16, 2018
- Received by editor(s) in revised form: July 26, 2020, and September 8, 2020
- Published electronically: March 22, 2021
- Communicated by: Nimish Shah
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 2501-2514
- MSC (2020): Primary 37A17
- DOI: https://doi.org/10.1090/proc/15340
- MathSciNet review: 4246801