## Local mixing on abelian covers of hyperbolic surfaces with cusps

HTML articles powered by AMS MathViewer

- by Wenyu Pan
- Proc. Amer. Math. Soc.
**149**(2021), 2501-2514 - DOI: https://doi.org/10.1090/proc/15340
- Published electronically: March 22, 2021
- PDF | Request permission

## Abstract:

We prove the local mixing theorem for geodesic flows on abelian covers of finite volume hyperbolic surfaces with cusps, which is a continuation of the work [Hee Oh and Wenyu Pan, Int. Math. Res. Not. 19 (2019), pp. 6036–6088]. We also describe applications to counting problems and the prime geodesic theorem.## References

- Martine Babillot and François Ledrappier,
*Lalley’s theorem on periodic orbits of hyperbolic flows*, Ergodic Theory Dynam. Systems**18**(1998), no. 1, 17–39. MR**1609507**, DOI 10.1017/S0143385798100330 - Martine Babillot and François Ledrappier,
*Geodesic paths and horocycle flow on abelian covers*, Lie groups and ergodic theory (Mumbai, 1996) Tata Inst. Fund. Res. Stud. Math., vol. 14, Tata Inst. Fund. Res., Bombay, 1998, pp. 1–32. MR**1699356** - Martine Babillot and Marc Peigné,
*Homologie des géodésiques fermées sur des variétés hyperboliques avec bouts cuspidaux*, Ann. Sci. École Norm. Sup. (4)**33**(2000), no. 1, 81–120 (French, with English and French summaries). MR**1743720**, DOI 10.1016/S0012-9593(00)00104-X - Tim Bedford, Michael Keane, and Caroline Series (eds.),
*Ergodic theory, symbolic dynamics, and hyperbolic spaces*, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1991. Papers from the Workshop on Hyperbolic Geometry and Ergodic Theory held in Trieste, April 17–28, 1989. MR**1130170** - S. G. Dani and John Smillie,
*Uniform distribution of horocycle orbits for Fuchsian groups*, Duke Math. J.**51**(1984), no. 1, 185–194. MR**744294**, DOI 10.1215/S0012-7094-84-05110-X - Dmitry Dolgopyat and Omri Sarig,
*Asymptotic windings of horocycles*, Israel J. Math.**228**(2018), no. 1, 119–176. MR**3874838**, DOI 10.1007/s11856-018-1761-6 - W. Duke, Z. Rudnick, and P. Sarnak,
*Density of integer points on affine homogeneous varieties*, Duke Math. J.**71**(1993), no. 1, 143–179. MR**1230289**, DOI 10.1215/S0012-7094-93-07107-4 - Charles L. Epstein,
*Asymptotics for closed geodesics in a homology class, the finite volume case*, Duke Math. J.**55**(1987), no. 4, 717–757. MR**916117**, DOI 10.1215/S0012-7094-87-05536-0 - Alex Eskin and Curt McMullen,
*Mixing, counting, and equidistribution in Lie groups*, Duke Math. J.**71**(1993), no. 1, 181–209. MR**1230290**, DOI 10.1215/S0012-7094-93-07108-6 - Alexander Gorodnik, Hee Oh, and Nimish Shah,
*Strong wavefront lemma and counting lattice points in sectors*, Israel J. Math.**176**(2010), 419–444. MR**2653201**, DOI 10.1007/s11856-010-0035-8 - Y. Guivarc’h and J. Hardy,
*Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d’Anosov*, Ann. Inst. H. Poincaré Probab. Statist.**24**(1988), no. 1, 73–98 (French, with English summary). MR**937957** - Y. Guivarch and Y. Le Jan,
*Note rectificative: “Asymptotic winding of the geodesic flow on modular surfaces and continued fractions” [Ann. Sci. École Norm. Sup. (4) 26 (1993), no. 1, 23–50; MR1209912 (94a:58157)]*, Ann. Sci. École Norm. Sup. (4)**29**(1996), no. 6, 811–814. MR**1422992** - Roger E. Howe and Calvin C. Moore,
*Asymptotic properties of unitary representations*, J. Functional Analysis**32**(1979), no. 1, 72–96. MR**533220**, DOI 10.1016/0022-1236(79)90078-8 - François Ledrappier and Omri Sarig,
*Fluctuations of ergodic sums for horocycle flows on $\Bbb Z^d$-covers of finite volume surfaces*, Discrete Contin. Dyn. Syst.**22**(2008), no. 1-2, 247–325. MR**2410958**, DOI 10.3934/dcds.2008.22.247 - Grigoriy A. Margulis,
*On some aspects of the theory of Anosov systems*, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2004. With a survey by Richard Sharp: Periodic orbits of hyperbolic flows; Translated from the Russian by Valentina Vladimirovna Szulikowska. MR**2035655**, DOI 10.1007/978-3-662-09070-1 - Gregory Margulis, Amir Mohammadi, and Hee Oh,
*Closed geodesics and holonomies for Kleinian manifolds*, Geom. Funct. Anal.**24**(2014), no. 5, 1608–1636. MR**3261636**, DOI 10.1007/s00039-014-0299-y - Amir Mohammadi and Hee Oh,
*Matrix coefficients, counting and primes for orbits of geometrically finite groups*, J. Eur. Math. Soc. (JEMS)**17**(2015), no. 4, 837–897. MR**3336838**, DOI 10.4171/JEMS/520 - Hee Oh,
*Harmonic analysis, ergodic theory and counting for thin groups*, Thin groups and superstrong approximation, Math. Sci. Res. Inst. Publ., vol. 61, Cambridge Univ. Press, Cambridge, 2014, pp. 179–210. MR**3220891** - Hee Oh and Wenyu Pan,
*Local mixing and invariant measures for horospherical subgroups on abelian covers*, Int. Math. Res. Not. IMRN**19**(2019), 6036–6088. MR**4016891**, DOI 10.1093/imrn/rnx292 - Hee Oh and Nimish A. Shah,
*Equidistribution and counting for orbits of geometrically finite hyperbolic groups*, J. Amer. Math. Soc.**26**(2013), no. 2, 511–562. MR**3011420**, DOI 10.1090/S0894-0347-2012-00749-8 - Mark Pollicott and Richard Sharp,
*Orbit counting for some discrete groups acting on simply connected manifolds with negative curvature*, Invent. Math.**117**(1994), no. 2, 275–302. MR**1273266**, DOI 10.1007/BF01232242 - Thomas Roblin,
*Ergodicité et équidistribution en courbure négative*, Mém. Soc. Math. Fr. (N.S.)**95**(2003), vi+96 (French, with English and French summaries). MR**2057305**, DOI 10.24033/msmf.408 - Omri Sarig,
*Existence of Gibbs measures for countable Markov shifts*, Proc. Amer. Math. Soc.**131**(2003), no. 6, 1751–1758. MR**1955261**, DOI 10.1090/S0002-9939-03-06927-2 - O. Sarig,
*Lecture notes on thermodynamic formalism for topological Markov shifts*. - Manuel Stadlbauer,
*The return sequence of the Bowen-Series map for punctured surfaces*, Fund. Math.**182**(2004), no. 3, 221–240. MR**2098779**, DOI 10.4064/fm182-3-3 - Pekka Tukia,
*On discrete groups of the unit disk and their isomorphisms*, Ann. Acad. Sci. Fenn. Ser. A. I.**504**(1972), 45 pp. (errata insert). MR**306487** - A. Velozo,
*Thermodynamic formalism and the entropy at infinity of the geodesic flow*, Preprint, arXiv:1711.06796.

## Bibliographic Information

**Wenyu Pan**- Affiliation: Pennsylvania State University, State College, Pennsylvania 16802
- Address at time of publication: Department of Mathematics, University of Chicago, Chicago, Illinois 60637
- MR Author ID: 1207609
- Email: wup60@psu.edu, wenyu@math.uchicago.edu
- Received by editor(s): September 16, 2018
- Received by editor(s) in revised form: July 26, 2020, and September 8, 2020
- Published electronically: March 22, 2021
- Communicated by: Nimish Shah
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**149**(2021), 2501-2514 - MSC (2020): Primary 37A17
- DOI: https://doi.org/10.1090/proc/15340
- MathSciNet review: 4246801