A conjecture of Watkins for quadratic twists
Authors:
Jose A. Esparza-Lozano and Hector Pasten
Journal:
Proc. Amer. Math. Soc. 149 (2021), 2381-2385
MSC (2020):
Primary 11G05; Secondary 11F11, 11G18
DOI:
https://doi.org/10.1090/proc/15376
Published electronically:
March 25, 2021
MathSciNet review:
4246791
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Watkins conjectured that for an elliptic curve $E$ over $\mathbb {Q}$ of Mordell-Weil rank $r$, the modular degree of $E$ is divisible by $2^r$. If $E$ has non-trivial rational $2$-torsion, we prove the conjecture for all the quadratic twists of $E$ by squarefree integers with sufficiently many prime factors.
- Julián Aguirre, Álvaro Lozano-Robledo, and Juan Carlos Peral, Elliptic curves of maximal rank, Proceedings of the “Segundas Jornadas de Teoría de Números”, Bibl. Rev. Mat. Iberoamericana, Rev. Mat. Iberoamericana, Madrid, 2008, pp. 1–28. MR 2603895
- Amod Agashe, Kenneth Ribet, and William A. Stein, The Manin constant, Pure Appl. Math. Q. 2 (2006), no. 2, Special Issue: In honor of John H. Coates., 617–636. MR 2251484, DOI https://doi.org/10.4310/PAMQ.2006.v2.n2.a11
- Ahmed Abbes and Emmanuel Ullmo, À propos de la conjecture de Manin pour les courbes elliptiques modulaires, Compositio Math. 103 (1996), no. 3, 269–286 (French, with French summary). MR 1414591
- Christophe Breuil, Brian Conrad, Fred Diamond, and Richard Taylor, On the modularity of elliptic curves over $\mathbf Q$: wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), no. 4, 843–939. MR 1839918, DOI https://doi.org/10.1090/S0894-0347-01-00370-8
- Frank Calegari and Matthew Emerton, Elliptic curves of odd modular degree, Israel J. Math. 169 (2009), 417–444. MR 2460912, DOI https://doi.org/10.1007/s11856-009-0017-x
- Kęstutis Česnavičius, The Manin constant in the semistable case, Compos. Math. 154 (2018), no. 9, 1889–1920. MR 3867287, DOI https://doi.org/10.1112/s0010437x18007273
- Christophe Delaunay, Computing modular degrees using $L$-functions, J. Théor. Nombres Bordeaux 15 (2003), no. 3, 673–682 (English, with English and French summaries). MR 2142230
- Neil Dummigan, On a conjecture of Watkins, J. Théor. Nombres Bordeaux 18 (2006), no. 2, 345–355 (English, with English and French summaries). MR 2289428
- Bas Edixhoven, On the Manin constants of modular elliptic curves, Arithmetic algebraic geometry (Texel, 1989) Progr. Math., vol. 89, Birkhäuser Boston, Boston, MA, 1991, pp. 25–39. MR 1085254
- G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), no. 3, 349–366 (German). MR 718935, DOI https://doi.org/10.1007/BF01388432
- Gerhard Frey, Links between solutions of $A-B=C$ and elliptic curves, Number theory (Ulm, 1987) Lecture Notes in Math., vol. 1380, Springer, New York, 1989, pp. 31–62. MR 1009792, DOI https://doi.org/10.1007/BFb0086544
- Matija Kazalicki and Daniel Kohen, On a special case of Watkins’ conjecture, Proc. Amer. Math. Soc. 146 (2018), no. 2, 541–545. MR 3731689, DOI https://doi.org/10.1090/proc/13759
- Matija Kazalicki and Daniel Kohen, Corrigendum to “On a special case of Watkins’ conjecture”, Proc. Amer. Math. Soc. 147 (2019), no. 10, 4563. MR 4002564, DOI https://doi.org/10.1090/proc/14456
- The LMFDB Collaboration, The L-functions and Modular Forms Database, 2020, www.lmfdb.org
- Ju. I. Manin, Cyclotomic fields and modular curves, Uspehi Mat. Nauk 26 (1971), no. 6(162), 7–71 (Russian). MR 0401653
- B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math. 44 (1978), no. 2, 129–162. MR 482230, DOI https://doi.org/10.1007/BF01390348
- M. Ram Murty, Bounds for congruence primes, Automorphic forms, automorphic representations, and arithmetic (Fort Worth, TX, 1996) Proc. Sympos. Pure Math., vol. 66, Amer. Math. Soc., Providence, RI, 1999, pp. 177–192. MR 1703750
- Vivek Pal, Periods of quadratic twists of elliptic curves, Proc. Amer. Math. Soc. 140 (2012), no. 5, 1513–1525. With an appendix by Amod Agashe. MR 2869136, DOI https://doi.org/10.1090/S0002-9939-2011-11014-1
- Joseph H. Silverman, Heights and elliptic curves, Arithmetic geometry (Storrs, Conn., 1984) Springer, New York, 1986, pp. 253–265. MR 861979
- Joseph H. Silverman, The arithmetic of elliptic curves, 2nd ed., Graduate Texts in Mathematics, vol. 106, Springer, Dordrecht, 2009. MR 2514094
- William Stein and Mark Watkins, Modular parametrizations of Neumann-Setzer elliptic curves, Int. Math. Res. Not. 27 (2004), 1395–1405. MR 2052021, DOI https://doi.org/10.1155/S1073792804133916
- L. Szpiro, Discriminant et conducteur des courbes elliptiques, Astérisque 183 (1990), 7–18 (French). Séminaire sur les Pinceaux de Courbes Elliptiques (Paris, 1988). MR 1065151
- Richard Taylor and Andrew Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. of Math. (2) 141 (1995), no. 3, 553–572. MR 1333036, DOI https://doi.org/10.2307/2118560
- Mark Watkins, Computing the modular degree of an elliptic curve, Experiment. Math. 11 (2002), no. 4, 487–502 (2003). MR 1969641
- Andrew Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2) 141 (1995), no. 3, 443–551. MR 1333035, DOI https://doi.org/10.2307/2118559
- Soroosh Yazdani, Modular abelian varieties of odd modular degree, Algebra Number Theory 5 (2011), no. 1, 37–62. MR 2833784, DOI https://doi.org/10.2140/ant.2011.5.37
- D. Zagier, Modular parametrizations of elliptic curves, Canad. Math. Bull. 28 (1985), no. 3, 372–384. MR 790959, DOI https://doi.org/10.4153/CMB-1985-044-8
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2020): 11G05, 11F11, 11G18
Retrieve articles in all journals with MSC (2020): 11G05, 11F11, 11G18
Additional Information
Jose A. Esparza-Lozano
Affiliation:
African Institute for Mathematical Sciences, Rue KG590 ST, Kigali, Rwanda
Address at time of publication:
Department of Mathematics, University of Michigan, Ann Arbor, Michigan
ORCID:
0000-0001-6555-2189
Email:
josealanesparza@gmail.com
Hector Pasten
Affiliation:
Pontificia Universidad Católica de Chile, Facultad de Matemáticas, 4860 Av. Vicuña Mackenna, Macul, RM, Chile
MR Author ID:
891758
Email:
hector.pasten@mat.uc.cl
Keywords:
Elliptic curve,
rank,
modularity
Received by editor(s):
March 25, 2020
Received by editor(s) in revised form:
October 13, 2020
Published electronically:
March 25, 2021
Additional Notes:
The first author was supported by a Carroll L. Wilson Award and the MIT International Science and Technology Initiatives (MISTI) during an academic visit to Pontificia Universidad Católica de Chile.
The second author was supported by FONDECYT Regular grant 1190442.
Communicated by:
Matthew Papanikolas
Article copyright:
© Copyright 2021
American Mathematical Society