Convexification of super weakly compact sets and measure of super weak noncompactness
HTML articles powered by AMS MathViewer
- by Kun Tu PDF
- Proc. Amer. Math. Soc. 149 (2021), 2531-2538 Request permission
Abstract:
In the paper, we give a quantitative version of the positive answer to the open question about the convex hull of a super weakly compact set. Measure of super weak noncompactness $\sigma$ is introduced and proved to share several nice properties with the Hausdorff measure of noncompactness. As an application, a fixed point theorem for $\sigma$-condensing maps is given.References
- B. Beauzamy, Opérateurs uniformément convexifiants, Studia Math. 57 (1976), no. 2, 103–139. MR 430844, DOI 10.4064/sm-57-2-103-139
- Henri Cartan, Théorie des filtres, CR Acad. Sci. Paris 205 (1937), 595–598.
- R. M. Causey and S. J. Dilworth, Metric characterizations of super weakly compact operators, Studia Math. 239 (2017), no. 2, 175–188. MR 3688802, DOI 10.4064/sm8645-3-2017
- Lixin Cheng, Qingjin Cheng, Sijie Luo, Kun Tu, and Jichao Zhang, On super weak compactness of subsets and its equivalences in Banach spaces, J. Convex Anal. 25 (2018), no. 3, 899–926. MR 3818547
- Lixin Cheng, Qingjin Cheng, Bo Wang, and Wen Zhang, On super-weakly compact sets and uniformly convexifiable sets, Studia Math. 199 (2010), no. 2, 145–169. MR 2669722, DOI 10.4064/sm199-2-2
- Mahlon M. Day, Reflexive Banach spaces not isomorphic to uniformly convex spaces, Bull. Amer. Math. Soc. 47 (1941), 313–317. MR 3446, DOI 10.1090/S0002-9904-1941-07451-3
- Francesco S. De Blasi, On a property of the unit sphere in a Banach space, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.) 21(69) (1977), no. 3-4, 259–262. MR 482402
- Smaïl Djebali and Zahira Sahnoun, Nonlinear alternatives of Schauder and Krasnosel’skij types with applications to Hammerstein integral equations in $L^1$ spaces, J. Differential Equations 249 (2010), no. 9, 2061–2075. MR 2718651, DOI 10.1016/j.jde.2010.07.013
- Per Enflo, Banach spaces which can be given an equivalent uniformly convex norm, Israel J. Math. 13 (1972), 281–288 (1973). MR 336297, DOI 10.1007/BF02762802
- H. H. Goldstine, Weakly complete Banach spaces, Duke Math. J. 4 (1938), no. 1, 125–131. MR 1546039, DOI 10.1215/S0012-7094-38-00410-7
- Manuel González and Antonio Martínez-Abejón, Tauberian operators, Operator Theory: Advances and Applications, vol. 194, Birkhäuser Verlag, Basel, 2010. MR 2574170, DOI 10.1007/978-3-7643-8998-7
- Stefan Heinrich, Ultraproducts in Banach space theory, J. Reine Angew. Math. 313 (1980), 72–104. MR 552464, DOI 10.1515/crll.1980.313.72
- Robert C. James, Some self-dual properties of normed linear spaces, Symposium on Infinite-Dimensional Topology (Louisiana State Univ., Baton Rouge, La., 1967) Ann. of Math. Studies, No. 69, Princeton Univ. Press, Princeton, N.J., 1972, pp. 159–175. MR 0454600
- Robert C. James, Super-reflexive Banach spaces, Canadian J. Math. 24 (1972), 896–904. MR 320713, DOI 10.4153/CJM-1972-089-7
- Aref Jeribi, Mohamed Ali Hammami, and Afif Masmoudi (eds.), Applied mathematics in Tunisia, Springer Proceedings in Mathematics & Statistics, vol. 131, Springer, Cham, 2015. MR 3440544, DOI 10.1007/978-3-319-18041-0
- Gilles Lancien and Matias Raja, Nonlinear aspects of super weakly compact sets, arXiv:2003.01030 (2020).
- Khalid Latrach and M. Aziz Taoudi, Existence results for a generalized nonlinear Hammerstein equation on $L_1$ spaces, Nonlinear Anal. 66 (2007), no. 10, 2325–2333. MR 2311035, DOI 10.1016/j.na.2006.03.022
- Albrecht Pietsch, What is “local theory of Banach spaces”?, Studia Math. 135 (1999), no. 3, 273–298. MR 1708997, DOI 10.4064/sm-135-3-273-298
- M. Raja, Finitely dentable functions, operators and sets, J. Convex Anal. 15 (2008), no. 2, 219–233. MR 2422986
- M. Raja, Super WCG Banach spaces, J. Math. Anal. Appl. 439 (2016), no. 1, 183–196. MR 3474357, DOI 10.1016/j.jmaa.2016.02.057
- C. Zălinescu, Convex analysis in general vector spaces, World Scientific Publishing Co., Inc., River Edge, NJ, 2002. MR 1921556, DOI 10.1142/9789812777096
Additional Information
- Kun Tu
- Affiliation: School of Mathematical Sciences, Yangzhou University, Yangzhou 225002, People’s Republic of China
- Address at time of publication: School of Mathematical Sciences, Yangzhou University, Siwangting Road No.180, Yangzhou 225002, People’s Republic of China
- MR Author ID: 1107434
- ORCID: 0000-0002-6197-0372
- Email: tukun@yzu.edu.cn
- Received by editor(s): May 11, 2020
- Received by editor(s) in revised form: September 17, 2020
- Published electronically: March 22, 2021
- Additional Notes: The author was partially supported by NSFC, grant no. 11701501, and the post doctoral funding of Yangzhou University, grant no. 137070608.
- Communicated by: Stephen Dilworth
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 2531-2538
- MSC (2020): Primary 46B20, 46B50, 47H10
- DOI: https://doi.org/10.1090/proc/15393
- MathSciNet review: 4246803