Convexification of super weakly compact sets and measure of super weak noncompactness
Author:
Kun Tu
Journal:
Proc. Amer. Math. Soc. 149 (2021), 2531-2538
MSC (2020):
Primary 46B20, 46B50, 47H10
DOI:
https://doi.org/10.1090/proc/15393
Published electronically:
March 22, 2021
MathSciNet review:
4246803
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: In the paper, we give a quantitative version of the positive answer to the open question about the convex hull of a super weakly compact set. Measure of super weak noncompactness $\sigma$ is introduced and proved to share several nice properties with the Hausdorff measure of noncompactness. As an application, a fixed point theorem for $\sigma$-condensing maps is given.
- B. Beauzamy, Opérateurs uniformément convexifiants, Studia Math. 57 (1976), no. 2, 103–139. MR 430844, DOI https://doi.org/10.4064/sm-57-2-103-139
- Henri Cartan, Théorie des filtres, CR Acad. Sci. Paris 205 (1937), 595–598.
- R. M. Causey and S. J. Dilworth, Metric characterizations of super weakly compact operators, Studia Math. 239 (2017), no. 2, 175–188. MR 3688802, DOI https://doi.org/10.4064/sm8645-3-2017
- Lixin Cheng, Qingjin Cheng, Sijie Luo, Kun Tu, and Jichao Zhang, On super weak compactness of subsets and its equivalences in Banach spaces, J. Convex Anal. 25 (2018), no. 3, 899–926. MR 3818547
- Lixin Cheng, Qingjin Cheng, Bo Wang, and Wen Zhang, On super-weakly compact sets and uniformly convexifiable sets, Studia Math. 199 (2010), no. 2, 145–169. MR 2669722, DOI https://doi.org/10.4064/sm199-2-2
- Mahlon M. Day, Reflexive Banach spaces not isomorphic to uniformly convex spaces, Bull. Amer. Math. Soc. 47 (1941), 313–317. MR 3446, DOI https://doi.org/10.1090/S0002-9904-1941-07451-3
- Francesco S. De Blasi, On a property of the unit sphere in a Banach space, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.) 21(69) (1977), no. 3-4, 259–262. MR 482402
- Smaïl Djebali and Zahira Sahnoun, Nonlinear alternatives of Schauder and Krasnosel’skij types with applications to Hammerstein integral equations in $L^1$ spaces, J. Differential Equations 249 (2010), no. 9, 2061–2075. MR 2718651, DOI https://doi.org/10.1016/j.jde.2010.07.013
- Per Enflo, Banach spaces which can be given an equivalent uniformly convex norm, Israel J. Math. 13 (1972), 281–288 (1973). MR 336297, DOI https://doi.org/10.1007/BF02762802
- H. H. Goldstine, Weakly complete Banach spaces, Duke Math. J. 4 (1938), no. 1, 125–131. MR 1546039, DOI https://doi.org/10.1215/S0012-7094-38-00410-7
- Manuel González and Antonio Martínez-Abejón, Tauberian operators, Operator Theory: Advances and Applications, vol. 194, Birkhäuser Verlag, Basel, 2010. MR 2574170
- Stefan Heinrich, Ultraproducts in Banach space theory, J. Reine Angew. Math. 313 (1980), 72–104. MR 552464, DOI https://doi.org/10.1515/crll.1980.313.72
- Robert C. James, Some self-dual properties of normed linear spaces, Symposium on Infinite-Dimensional Topology (Louisiana State Univ., Baton Rouge, La., 1967) Princeton Univ. Press, Princeton, N.J., 1972, pp. 159–175. Ann. of Math. Studies, No. 69. MR 0454600
- Robert C. James, Super-reflexive Banach spaces, Canadian J. Math. 24 (1972), 896–904. MR 320713, DOI https://doi.org/10.4153/CJM-1972-089-7
- Aref Jeribi, Mohamed Ali Hammami, and Afif Masmoudi (eds.), Applied mathematics in Tunisia, Springer Proceedings in Mathematics & Statistics, vol. 131, Springer, Cham, 2015. MR 3440544
- Gilles Lancien and Matias Raja, Nonlinear aspects of super weakly compact sets, arXiv:2003.01030 (2020).
- Khalid Latrach and M. Aziz Taoudi, Existence results for a generalized nonlinear Hammerstein equation on $L_1$ spaces, Nonlinear Anal. 66 (2007), no. 10, 2325–2333. MR 2311035, DOI https://doi.org/10.1016/j.na.2006.03.022
- Albrecht Pietsch, What is “local theory of Banach spaces”?, Studia Math. 135 (1999), no. 3, 273–298. MR 1708997, DOI https://doi.org/10.4064/sm-135-3-273-298
- M. Raja, Finitely dentable functions, operators and sets, J. Convex Anal. 15 (2008), no. 2, 219–233. MR 2422986
- M. Raja, Super WCG Banach spaces, J. Math. Anal. Appl. 439 (2016), no. 1, 183–196. MR 3474357, DOI https://doi.org/10.1016/j.jmaa.2016.02.057
- C. Zălinescu, Convex analysis in general vector spaces, World Scientific Publishing Co., Inc., River Edge, NJ, 2002. MR 1921556
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2020): 46B20, 46B50, 47H10
Retrieve articles in all journals with MSC (2020): 46B20, 46B50, 47H10
Additional Information
Kun Tu
Affiliation:
School of Mathematical Sciences, Yangzhou University, Yangzhou 225002, People’s Republic of China
Address at time of publication:
School of Mathematical Sciences, Yangzhou University, Siwangting Road No.180, Yangzhou 225002, People’s Republic of China
MR Author ID:
1107434
ORCID:
0000-0002-6197-0372
Email:
tukun@yzu.edu.cn
Received by editor(s):
May 11, 2020
Received by editor(s) in revised form:
September 17, 2020
Published electronically:
March 22, 2021
Additional Notes:
The author was partially supported by NSFC, grant no. 11701501, and the post doctoral funding of Yangzhou University, grant no. 137070608.
Communicated by:
Stephen Dilworth
Article copyright:
© Copyright 2021
American Mathematical Society